Как сделать катушку для генератора

Для расчёта напряжения генератора воспользуемся простой формулой, она очень простая и не должна вызвать проблем. Подробнее с примером можно почитать здесь – Расчёт ЭДС генератора. Про фазы и соединения катушек будет ниже, а пока разберемся с напряжением генератора.

Формула E=B·V·L где: Е-напряжение генератора (V). B-магнитная индукция магнитов(Тл). V-скорость движения магнитов (м/с). L-активная длина проводника (м).

С буквой Е – это напряжение генератора, которое нам нужно вычислить, а далее буква В – которая не известна, так-как мы не знаем какая магнитная индукция магнитов. Но если помучить поисковик и почитать форумы, то можно узнать что магнитная индукция неодимовых магнитов около 1,25Тл, конечно она разная для разных марок магнитов, но это среднее значение. Так-же известно что чем дальше от магнита – тем меньше и магнитная индукция. В общем если в случае изготовления дискового генератора расстояние между магнитами на противоположных дисках будет равно толщине магнитов, то магнитная индукция будет примерно 1.0Тл, если расстояние больше, то естественно магнитное поле будет слабее. Если к примеру у вас магниты толщиной 10мм, и вы делаете расстояние между магнитами 10мм, то индукция будет где то 1.0Тл, а статор в этом случае получится не более 8мм толщиной, и по 1мм на зазоры. Если расстояние будет скажем 12-14мм, то магнитная индукция упадет до 0.8-0.7Тл и ниже.

Для генераторов с железом принцип такой-же, но толщина магнитов может быть разная, некоторые ставят магниты толщиной 10-15мм, хотя для магнитной индукции в 1.0Тл достаточно толщины магнитов 3-4мм. Ещё важна толщина – магнито-пропускаемость статора, на зубы которого наматываются катушки. Если переборщить с толщиной магнитов то статор не сможет замкнуть всё магнитное поле и оно выйдет наружу, и к статору снаружи будет магнитися железо. То-есть это потери магнитного поля и нет смысла использовать слишком мощные магниты так-как часть магнитного поля не будет использоваться. Все конечно зависит от конкретных условий, но если не известна магнитная индукция, то лучше её брать как 0.8-1Тл.

Вернемся к формуле, V – это скорость движения магнитов, рассчитать её очень просто. К примеру если диаметр ротора с магнитами у нас 20см, то 20*3.14=62.8см. То-есть получается что за один оборот магниты проходят расстояние 62.8см или 0.62метра. Если диаметр ротора 8см, то аналогично 8*3.14=25.12см или 0.25м.

L – это активная длина проводника, то-есть это та длинна медного провода, которая попадает под магниты, ведь именно только тот участок провода вырабатывает электричество, который попадает под магнитное поле магнитов. Для дисковых аксиальных генераторов длинна активного проводника равна длинне магнитов. К примеру если у вас круглые магниты размером 30*10мм, то L=30мм, ну а если прямоугольные размером 50*30*10мм, то L=50мм. Для генераторов с железным статором активная длинна проводника равна ширине статора.

Активная длинна проводника

Теперь попробуем высчитать напряжение генератора, но сначало разберемся с катушками генератора

Ниже схема соединения однофазного генератора

Соединение катушек

Соединение катушек трехфазного генератора

Соединение катушек

Вернёмся к формуле E=B·V·L. К примеру планируется намотать 18 катушек проводом 1.0 мм, и в катушку помещается по 80 витков, значит всего у нас витков 18*80=1440 витков. Если генератор однофазный то так и считаем по всем катушкам, а если трёхфазный то будем брать катушки одной фазы, в данном случае шесть катушек в фазе, а потом вычислим данные при соединении звездой или треугольником. Я буду считать трёхфазный, по этому беру шесть катушек 80*6=480витков.

Магниты у нас к примеру 30*10мм (по 12шт на диске), значит активная длинна проводника 0.03м, если статор железный, то берётся ширина статора. Диски с магнитами у нас к примеру диаметром 20см, но надо брать диаметр по центру магнитов, значит минус 1,5см по кругу и того 20-3см=17*3.14=53.38см или 0.53м. Хочу напомнить что толщина железных дисков должна быть не менее толщины магнитов, иначе магнитное поле выйдет за железо и не будет участвовать в выработке электричества и магнитная индукция будет ниже, а если у вас к примеру ротор асинхронного двигателя, то после проточки желательно одеть металлическую гильзу и на неё клеить магниты, или вытачивать цельно-металлический ротор, так магниты будут использоваться эффективнее и можно или получить больше мощности или сэкономить на толщине магнитов.

И так теперь у нас есть необходимые данные для расчёта напряжения генератора к примеру при 60об/м. Магнитную индукцию возьмём равной 1Тл. Скорость движения магнитов у нас за оборот 0.53м, значит при 60об/м будет 1об/с, то-есть 0.53м/с – скорость движения магнитов. Активная длинна проводника нам тоже известна и равна 0.03м. Тогда 0.03м нужно умножить на количество витков в катушке (80) и на количество катушек (6), и получится 0.03*480=14.4м.

Теперь представляем значения в формулу E=B(1Тл)*V(0.53м)*L(14.4м), получается E=7.632V. В общем при 60об/м получается напряжение фазы 7.6 вольт. Напряжение генератора растёт линейно в зависимости от оборотов, значит при 120об/м будет 15.2 вольта, а при 240об/м будет 30.4 вольт. А при 300об/м будет 38.0 вольт. Зарядка начнётся при 120об/м если соединить фазы генератора треугольником. При соединении звездой напряжение генератора будет выше в 1,7 раза, значит зарядка начнётся ещё раньше, при 90об/м.

Но если нарисовать виртуальный статор с катушками и магнитами, то можно увидеть что магнит не перекрывает собой полностью катушку и 30% активной зоны не перекрывается как бы не стоял магнит, а это значит что 30% не участвует в выработке напряжения и это надо учитывать. Часто получается так что магнит перекрывает только половину катушки, и это значит что только половина витков участвует в выработке электричества. Значит в нашем случае напряжение будет ниже на 30% чем получилось, то-есть не E=7.632V, а E=5V.

Теперь поговорим про ток генератора, его сопротивление и соединение звездой и треугольником

Чем меньше сопротивление – тем выше сила тока зарядки и меньше потерь на нагрев, по-этому сопротивление обмотки генератора нужно делать как можно меньше. В нашем генераторе состоящем из 18 катушек всего 18*80=1440 витков, это по 480 витков в фазе. Чтобы узнать сопротивление фазы нужно узнать длинну провода в фазе и его сечение. Длина одного витка в среднем примерно 0.08м, значит 0.08*480=38.4м. Сопротивление одного метра медного провода сечением 1мм равно 0.0224Ом. Далее 38.4*0.0224=0.86Ом.

Читайте также:  Как сделать вольер для кур

Таблица сопротивления медного провода

Чтобы узнать какой будет ток зарядки аккумулятора нужно знать напряжение генератора и его сопротивление, что мы уже знаем. Чтобы вычислить нужно от напряжения холостого хода генератора отнять напряжение генератора, и полученную сумму разделить на сопротивление, и получится ток зарядки. К примеру у нас при соединении звездой при 120об/м напряжение в холостую равно 10V*1.7=17 вольт. Тогда от 17 вольт отнимем напряжение аккумулятора 17-13 вольт и получим разницу в 4 вольта, разделим на сопротивление 1,46Ом, и получим 4:1.46=2.7Ампер. И так можно вычислить силу тока на каждых оборотах генератора, а чтобы получить мощность зарядки нужно амперы умножить на вольты, в данном случае 2.7*13=35.1 ватт*ч. А уже при 240об/м напряжение в холостую будет в два раза больше, так-как растёт линейно, тогда уже 20V-13=7:1.46=4.7 Ампер.

Но здесь играет роль не только сопротивление самого генератора, но и сопротивление провода от генератора до аккумулятора, сопротивление диодного моста, на котором падает до 1вольт напряжения, и сопротивление самого аккумулятора. Все это высчитать можно, но довольно сложно. Так-же изменяется сопротивление генератора во время работы, по-этому сумма общих потерь может составлять до 50% от мощности, и в итоге ток зарядки может оказаться в два раза меньше расчетного. И так-как это трудно все учесть на потери в среднем можно скинуть 30%, значит реально а аккумулятор пойдёт ток не 4.7Ампер при 240об/м, а значительно ниже, около 3.5-4 Ампера.

Такой расчёт дает примерное представление о будущем генераторе, но все-же это лучше чем делать как получится ничего не считая, и потом удивляться тому что или напряжение слишком низкое или высокое, или сопротивление слишком большое и смешной ток зарядки. Просчитав свои генераторы я убедился в справедливости такого расчёта генератора.

При расчете генератора нужно учитывать что его будет крутить ветроколесо ветрогенератора, и у ветроколеса есть свои обороты, и генератор нужно хоть примерно делать под будущий винт. Если это будет вертикальный ветряк, то его ветроколесо вращается очень медленно по сравнению с горизонтальным винтом. И в связи с этим нужно чтобы зарядка начиналась на очень низких оборотах генератора. Чтобы зарядка начиналась рано нужно чтобы напряжение было выше напряжения аккумулятора, отсюда нужно в катушках иметь как можно больше витков. Но чем больше витков тем длиннее провод, а значит и сопротивление, а сопротивление определяет силу тока зарядки. В итоге чтобы генератор был мощный и рано начиналась зарядка, нужно его рассчитать так чтобы и мощность была, и ветроколесо не перегрузить – иначе оно не выйдет на свои обороты и не наберет мощности.

С горизонтальным винтом генератор нужен не такой большой и материалоемкий как для вертикального, у горизонтальных винтов обороты в среднем в 5 раз выше, от этого и генератор нужен в пять раз меньше и во столько же раз дешевле. Расчёты витроколёс есть в даругих статьях из раздела "Расчёты ветряков". Советую вам и с этим материалом ознакомится, так-как ветрогенератор это единый механизм и его узлы должны быть подходящими по параметрам друг для друга, иначе или винт слишком мощный и малооборотистый или генератор слишком мощный, и толку от такого ветряка будет мало.

Предварительный шаблон генератора

Рисунок генератора

Размеры катушки

Чтобы подогнать генератор под ветроколесо или наоборот потом ветроколесо под генератор нужно высчитать мощность генератора на разных оборотах, к примеру при 120об/м когда начнётся зарядка аккумулятора, и начнётся нагрузка на ветроколесо, и далее при 180,240,300,360,420,480,540,600об/м.

Исходя из выше рассчитанных данных мы получили 17вольт при 120об/м, сопротивление у нас 1.46Ом. более точные данные будут если мерить напряжение во время зарядки в реальном времени, но я для малого тока взял напряжение аккумулятора равным 13 вольт, а далее исходил из напряжения 14 вольт. В итоге ниже получились вот такие расчёты, но на более высоких оборотах при большой разнице холостого напряжения и напряжения при заряде аккумулятора КПД генератора будет падать и ток зарядки опять-же не будет таким большим, хотя генератор будет грузить винт на большую мощность, потери будут на нагреве катушек и в проводах. В общем ток зарядки будет ниже ещё на 10-20%.

при 120об/м – 17-13=4:1.46=2.7А*13=35ватт
при 180об/м – 25.5-14=11.5:1.46=7.8А*14=110ватт
при 240об/м – 34-14=20:1.46=13.6А*14=190ватт
при 300об/м – 42.5-14=28.5:1.46=19.5А*14=273ватт
при 360об/м – 51-14=37:1.46=25.3А*14=354ватт
при 420об/м – 59-14=45:1.46=31А*14=436ватт
при 480об/м – 68-14=54:1.46=36.9А*14=516ватт
при 600об/м – 85-14=71:1.46=48.6А*14=680ватт

Но ветроколесо желательно при расчёте делать на 30% мощнее чем расчетные данные генератора, и так чтобы на низких оборотах ветроколесо было чуть мощнее генератора. У нас при 120об/м 35ватт с генератора, значит ветроколесо должно при 120об/м иметь мощность около 40-50ватт. Если ветроколесо будет слабее, то генератор не позволит ему раскрутится до своих оборотов и в итоге обороты будут ниже и мощность тоже. Подробнее про расчёты ветроколес смотрите статьи в разделе, там всё есть.

А теперь немного истории, и все по порядку:

Построить ветряк – моя давнишняя мечта, но было много препятствий. То жил в городской квартире, а дачи не было. То переезды из одного города в другой, потом в третий. В Светловодске я живу последние 18 лет. Здесь есть все условия – частный коттедж на две семьи, 5 соток огорода и столько же сада. С востока и юга открытая местность, с севера и запада рельеф выше моего. Ветры не балуют, т.е. не очень сильные. Ну, думаю, здесь я построю ветряк для души.

Но когда занялся вплотную, оказалось все не так просто. Литературы подходящей не нашел. Долго не мог определиться с генератором, не знал, как правильно изготовить лопасти, какой редуктор применить, как защитить от урагана и т.п. Как говорится, варился в собственном соку. Но знал, что если очень хочется, то все получится. Неспеша делал мачту. На чермете подбирал подходящие куски труб, начиная с диаметра 325 мм по 1,5 м длиною (чтобы помещалась в багажнике моей машины). Взамен сдавал металлолом. Получилась мачта длиной 12м. Для фундамента привез бракованный фундаментный блок от высоковольтной опоры. Закопал его на 2метра в землю и 1м остался над землей. Затем обварил его двумя поясами из уголка, к ним приварил кронштейны. На концы кронштейнов к анкерным болтам приварил «пластинки» из 16мм железа размером 50 х 50 см, соединенных между собой мощными петлями. Купил на рынке мягкие 10 мм тросы и талрепы, все анодированное, не ржавеет. Сварил и закопал анкер под съемную лебедку. Лебедку тоже пришлось делать самодельную, используя готовый червячный редуктор. Кроме того, установил П-образную подпорку высотой около 2м, на которую должна ложиться мачта. Так как спешить было некуда – мачта делалась без спешки и поэтому получилась, на мой взгляд, красивая и надежная.

Читайте также:  Как смонтировать контур заземления

Решил построить действующую уменьшенную модель, чтобы выдавала до 1 ампера на 12-вольтовый аккумулятор.

Для изготовления ротора купил 24 шт. дисковых неодимовых магнита 20х5 мм. Нашел ступицу от колеса мотоблока, токарь по моим чертежам выточил два стальных диска диаметром по 105мм и толщиной 5мм, распорную втулку толщиной 15мм и вал. На диски наклеил и до половины залил эпоксидкой магниты по 12 шт на каждый, чередуя их полярность.

Для изготовления статора намотал 12 катушек эмальпроволокой диаметром 0,5мм по 60 витков на катушку (взял проволоку с петли размагничивания старого негодного цветного кинескопа, там его достаточно). Распаял катушки последовательно конец с концом, начало с началом и т.д. Получилась одна фаза (боялся, что будет маловато напряжения). Выпилил из 4 мм фанеры форму, натер ее воском.

Жаль, вся форма в сборе не сохранилась. На нижнее основание положил вощеную бумагу (спер в жены на кухне, она выпечку на ней делает), на нее наложил форму с круглячком в центре. Потом вырезал со стеклоткани два кружка. Один постелил на вощеную бумагу нижнего основания формы. На него выложил распаянные между собой катушки. Выводы из многожильного изолированного провода проложил в выпиленные ножовкой неглубокие пазы. Залил все это эпоксидкой. Подождал около часа, чтобы пузырьки воздуха все вышли, и эпоксидка разлилась равномерно по всей форме и пропитала катушки, долил, где надо, и накрыл вторым кружком стеклоткани. Сверху положил второй лист вощеной бумаги и прижал верхним основанием (куском ДСП). Главное, чтобы оба основания были строго плоскими. Утром разъединил форму и извлек красивый прозрачный статор толщиной 4мм.

Жаль, что для более мощного ветряка эпоксидка не годится, т.к. боится высокой температуры.

В ступицу вставил 2 подшипника, в них вал со шпонкой, на вал первый диск ротора с наклеенными и залитыми до половины эпоксидкой магнитами, потом распорную втулку толщиной 15мм. Толщина статора с залитыми катушками 4мм, толщина магнитов 5мм, итого 5+4+5=14мм. На дисках ротора оставлены бортики на краях по 0,5мм чтобы упирались магниты при центробежной силе (на всякий случай). Поэтому отнимем 1мм. Осталось 13мм. На зазоры остается по 1мм. Поэтому распорка 15мм. Потом статор (прозрачный диск с катушками), который крепится к ступице тремя медными 5 мм болтами, их видно на фото. После ставится второй диск ротора, который упирается в распорную втулку. Нужно остерегаться, чтобы палец не попал под магниты – очень больно защемляют. (Противоположные магниты на дисках должны иметь разную полярность, т.е. притягиваться.)

Зазоры между магнитами и статором регулируются медными гайками, размещенными на медных болтах по обе стороны ступицы.

На оставшуюся выступающую часть вала со шпонкой одевается пропеллер, который через шайбу (а если нужно то и втулку) и гровер прижимается гайкой к ротору. Гайку желательно закрыть обтекателем (я его так и не сделал).

Зато сделал крышу-козырек над ротором и статором, распилив алюминиевую кастрюльку так, чтобы захватить часть донышка и часть боковой стенки.

Пропеллер изготовил из метрового куска дюралевой поливной трубы диаметром 220 мм с толщиной стенки 2,5мм.

Просто на ней нарисовал двухлопастный пропеллер и выпилил электролобзиком. (Из этого же куска я еще выпилил три лопасти длиной по 1м для ветряка на автогенераторе, и еще как видите осталось). Переднюю кромку лопастей я заокруглил "на глаз" радиусом, равным половине толщины дюрали, а зднюю заострил с фаской приблизительно 1см на концах и до 3см к центру.

В центре пропеллера сначала просверлил отверстие 1мм сверлом для балансировки. Балансировать можно прямо на сверле, положив дрель на стол, или подвесить на нить к потолку. Балансировать нужно очень тщательно. Я отдельно балансировал диски ротора и отдельно пропеллер. Ведь обороты доходят до 1500 об/мин.

Так как магнитное залипание отсутствует, пропеллер весело вращается от малейшего ветерка, которого на земле даже не ощущаешь. При рабочем ветре развивает высокие обороты, у меня амперметр на 2А прямого включения, так он часто зашкаливает на 12 вольтовый старый автомобильный аккумулятор. Правда при этом начинает складываться и подниматься вверх хвост, т.е. срабатывает автоматическая защита от сильного ветра и чрезмерных оборотов.

Защита выполнена на основе наклонной оси вращения хвоста.

Отклонение оси составляет 18-20 градусов от вертикали.

Отработал этот ветрячок у меня 3 месяца. Снял, разобрал – подшипники в порядке, статор тоже цел. Немного приржавели магниты в тех местах, где не попала краска. Кабель идет напрямую без токосъемника. Он у меня есть сделанный, но я передумал его ставить. Когда демонтировал малый ветрячек – он небыл перекручен. Так что я убедился – он не нужен, только лишние хлопоты. Выдавал он до 30 ватт мощности. Шум от пропеллера при закрытых окнах не слышен. А при открытых не сильно слышно, если здоровый сон, то не разбудит, тем более на фоне шумов самого ветра.

СВЕЖИЙ НОМЕР

Новости ИР

Наши лауреаты

ЖУРНАЛ «ИЗОБРЕТАТЕЛЬ И РАЦИОНАЛИЗАТОР»

Генератор с изменяемой схемой подключения катушек обмотки

Давайте рассмотрим подробней, винт вращает генератор, напряжение на выходе генератора зависит от длины проводника находящегося в магнитном поле, силы этого поля и частоты его изменения. Магниты мы используем постоянные поэтому сила поля не меняется, катушки тоже определенной длинны и включены в трех фазную или однофазную сеть, не важно. Меняется только частота вращения винта, чем сильней ветер тем быстрей крутится винт, и наоборот слабей ветер тише винт. На выходе генератора мы будем получать плавающее напряжение. Для стабилизации напряжения нам необходим инвертор который выпрямит напряжение и приведет его к нужным нам параметрам. В частности для заряда кислотного аккумулятора необходимо напряжение 13,8 14 вольт. Если напряжение выше аккумулятор будет кипеть, то есть часть энергии будет пролетать мимо, а если напряжение намного выше может пробить пластины аккумулятора. Если напряжение ниже обозначенного аккумулятор вообще не будет заряжаться. Инвертор необходимая деталь ветрогенератора, но при работе с малыми генерируемыми мощностями на инверторе теряется от 40 до 60 процентов мощности. А еще надо помнить про потери на балансовых нагрузках и проблемах с контролем отбора мощности при слабом ветре (не перегрузить и не застопорить винт при слабом ветре).

Читайте также:  Как часто можно пользоваться электрической зубной щеткой

То есть ветрогенератор работающий на слабом ветре может запасти в аккумуляторе в лучшем случаи половину мощности получаемую на валу ветра турбины а за частую эта доля не превышает 20 30 процентов мощности на валу винта. Предлагаемая далее конструкция генератора позволит минимизировать потери при трансформации и преобразовании напряжения что позволит как минимум удвоить выходную мощность.

Предполагается использовать генератор с изменяемой схемой подключения катушек обмотки. Ротор генератора состоит из нескольких постоянных магнитов. Статор имеет многополюсную обмотку, состоящую из независимых катушек (или из катушек намотанных двойным проводом зависит от конструкции).

На рисунке условно изображен генератор состоящий из трех катушек намотанных двойным проводом А1 А2 и Б1 Б2 в центре вращающееся магнитное поле.

Каждая катушка генератора намотана двумя проводами и являются двумя независимыми катушками с обмотками А1-А2 и Б1-Б2. Мы имеем возможность соединять катушки то последовательно, то параллельно, замыкая контакты А2-Б1 или А1-Б1 и А2-Б2. Замыкая катушки последовательно мы увеличиваем напряжение но уменьшаем силу тока, включив их параллельно мы увеличим силу тока уменьшив напряжение. Напряжение на выходе генератора зависит от длинны провода, находящегося в магнитном поле, силы магнитной индукции и частоты ее изменения. Меняется скорость ветра, изменяется и выходное напряжение. Переключая катушки то последовательно, то параллельно мы сможем регулировать выходное напряжение генератора, удерживая его в нужных нам пределах.

Это общее описание идеи которая дает нам возможность отказаться от использования инвертора и избежать связанных с его работай потерь. На практике понадобится очень большое количество катушек и узлов коммутации чтобы обеспечить необходимую точность регулировки напряжения что само по себе ставит перед нами новую проблему.

Для решения возникших проблем предлагается использовать ветра турбину описанную в статье (Конструкция винта ветрогенератора) опубликованную в журнале Изобретатель и рационализатор июль 2014г. В отличии от классического горизонтального ветрогенератора скорость вращения которого превышает скорость ветра и может достигать 500 оборотов в минуту представленная конструкция всегда вращается со скоростью ветра, но при этом крутящий момент намного выше чем у классического горизонтального ветрогенератора. А чем меньше скорость вращения тем меньше количество катушек и узлов коммутации нам понадобиться.

Но для более четкого понимания давайте сравним работу двух конструкций. Рассмотрим классический ветряк с горизонтальной осью вращения. Предположим винт вращается на холостом ходу, без нагрузки. При отборе мощности скорость вращения начинает падать но мощность растет до какой то величины. Мы продолжаем увеличивать отбор и тогда и мощность и обороты падают. Задача контролера регулируя отбор мощности держать постоянно максимальные значения снимаемой мощности, балансировать на пике. Все эти регулировки приблизительные, мы точно не знаем почему упали обороты. Изменилась скорость ветра, перегрузили ветряк отбором мощности или какие то другие причины. Конструкция описанная в журнале Изобретатель и рационализатор июль 2014г. самостоятельно регулирует угол атаки в зависимости от скорости ветра и снимаемой нагрузки. Если конструкция вращается со скоростью ветра ее лопасти расположены к набегающему потоку строго параллельно, поток обтекает лопасть равномерно с обоих сторон и подъемная сила не возникает. Если вращение ветряка отстает от скорости ветра на какой то угол то набегающий поток давит на лопасть с положительным углом атаки и создает подъемную силу ветра. Ветряк будет стремится достигнуть скорость ветра но чем ближе скорость вращения ветряка к скорости ветра тем меньше будет угол атаки набегающего потока а следовательно и подъемная сила. Если мы будем нагружать ветряк пытаясь затормозить его, угол атаки будет расти а следовательно будет расти подъемная сила ветра. Скорость вращения ветряка падать не будет но крутящий момент многократно вырастет.

Как это будет работать на практике. Потребителем ветра генератора является аккумулятор. Предположим что, аккумулятор сильно разряжен, потребляет большую мощность и тем самым подсаживает линию. На практике это означает что увеличивая отбор мощности мы нагружаем генератор, усилие на вращение генератора растет и начинает тормозить вращение ветряка. Если мы будем пытаться затормозить ветряк, угол атаки будет расти а следовательно будет расти подъемная сила ветра и как следствие крутящий момент. То есть ветряк будет увеличивать крутящий момент пытаясь компенсировать недостающую мощность. По аналогии то же происходит и на гидроэлектростанции, с увеличением потребляемой мощности открывают задвижки увеличивая давление воды на лопасти турбины чтобы компенсировать увеличивающийся тормозящий эффект нагружаемой турбины. При этом следят чтобы скорость вращения турбины не увеличилась, частота напряжения в розетках должна оставаться 50 герц. Ветрогенератор регулируя угол атаки лопасти будет пытаться удержать напряжение в нужных нам параметрах. Предположим что аккумулятор очень сильно разряжен и мощности потока ветра не хватает для вращения генератора с нужной частотой при данной нагрузке. Тогда мы переключим катушки генератора из параллельного подключения в последовательное и тем самым увеличим напряжение что позволит нам удержать нужное нам напряжение на клеммах аккумулятора при данной силе ветра. Для коммутации катушек обмотки генератора предполагается использовать импульсные бистабильные реле так как они экономичны имеют два фиксированных положения и требуют затрат энергии только в момент переключения.

Ветряк описанный в журнале Изобретатель и рационализатор июль 2014г. использует подъемную силу ветра как движущую силу, но реализует это по средством иной траектории движения лопастей, что дает конструкции возможность регулировать угол атаки лопасти и как следствие управляемый крутящий момент. Четкое позиционирование лопасти относительно набегающего потока дает конструкции значительное преимущество в сравнении с другими ветрогенераторами. Это позволит удвоить мощность на выходе за счет минимизации потерь при трансформации выходного напряжения в сравнении с существующими аналогами представленными сегодня на рынке.

Комментарии запрещены.

Присоединяйся