Как сделать таймер на ардуино

РАБОТАЕМ ПО ТАЙМЕРУ В ARDUINO

Я думаю все знают классический алгоритм создания таймера на millis() – счётчике аптайма:

Классический таймер на millis()

Несколько таймеров

Данный алгоритм позволяет спокойно переходить через переполнение millis() без потери периода, но имеет один большой минус – время считается с момента последнего вызова таймера, и при наличии задержек в коде таймер будет накапливать погрешность, отклоняясь от “ритма”. Недавно я придумал более точный алгоритм таймера на миллис, который соблюдает свой период даже после пропуска хода!

Улучшенный таймер

Данный таймер имеет механику классического таймера с хранением переменной таймера, а его период всегда кратен PERIOD и не сбивается. Эту конструкцию можно упростить до

В этом случае алгоритм получается короче, кратность периодов сохраняется, но теряется защита от пропуска вызова и переполнения millis().

В этой библиотеке реализован полноценный таймер на счётчике аптайма, позволяющий даже “приостановить” счёт (не приостанавливая сам аптайм).

Примечание: таких таймеров можно создать сколько душе угодно (пока хватит памяти), что позволяет создавать сложные программы с кучей подзадач, но для функционирования данного таймера нужен “чистый” loop с минимальным количеством задержек, или вообще без них. Всё таки таймер “опрашивается” в ручном режиме. Таймер, который не боится задержек, делается на прерывании таймера, смотрите вот эту библиотеку.

БИБЛИОТЕКА GYVERTIMER

GyverTimer v3.2

GTimer – полноценный таймер на базе системных millis() / micros(), обеспечивающий удобную мультизадачность и работу с временем, используя всего одно родное прерывание таймера (Timer 0)

  • Миллисекундный и микросекундный таймер
  • Два режима работы:
  • Режим интервала: таймер “срабатывает” каждый заданный интервал времени
  • Режим таймаута: таймер “срабатывает” один раз по истечении времени (до следующего перезапуска)
  • Служебные функции:
    • Старт
    • Стоп
    • Сброс
    • Продолжить
    • Поддерживаемые платформы: все Arduino (используются стандартные Wiring-функции)

      ДОКУМЕНТАЦИЯ

      Документация

      Конструктор

      Класс GTimer позволяет работать как с миллисекундным, так и с микросекундным таймером. В общем виде пример выглядит так:

      Где type это MS (,мс, миллисекундный таймер) или US (мкс, микросекундный), period – период в мс или мкс соответственно.

      Настройки по умолчанию

      • При создании таймера можно ничего не указывать : GTimer myTimer; , тогда таймер будет сконфигурирован как миллисекундный и не запустится
      • Если указать только тип таймера (MS/US) GTimer myTimer(MS); , таймер настроится на выбранный режим (мс/мкс) и не запустится
      • Если указать тип таймера и интервал GTimer myTimer(US, 5000); , таймер настроится на выбранный режим (мс/мкс) и запустится в режиме интервала

      Режимы работы

      Таймер может работать в режиме интервалов и в режиме таймаута:

      • Интервалы. Запуск – метод setInterval(время) с указанием времени. В режиме интервалов таймер срабатывает (метод isReady() возвращает true) каждый раз при достижении указанного периода и автоматически перезапускается. Удобно для периодических действий
      • Таймаут. Запуск – метод setTimeout(время) с указанием времени. В режиме таймаута таймер срабатывает (метод isReady() возвращает true) только один раз при достижении указанного периода и автоматически отключается. Для повторного запуска нужно вызвать .setTimeout() с указанием периода, или просто .start() – запустит таймер на новый круг с прежним периодом

      Управление таймером

      Для управления состоянием таймера есть следующие методы:

      • start() – запускает (перезапускает) таймер с последним установленным временем
      • stop() – останавливает таймер
      • resume() – продолжает отсчёт таймера с момента остановки
      • reset() – сбрасывает таймер (отсчёт периода/таймаута начинается заново)
      • isEnabled() – возвращает true, если таймер работает (если он не stop() или не вышел таймаут)

      В этом уроке мы создадим четырёхканальное реле времени. К данному устройству можно подключить до 4 приборов (лампочки, светодиодные ленты, моторы, обогреватели, вентиляторы и т.д.), каждое из которых будет включаться на заданные для него промежутки времени суток и в заданные дни недели.

      Каждый из четырёх каналов нашего реле времени может выдавать не только логические уровни (1/0 – вкл/выкл), но и сигналы ШИМ (включать приборы на определённую мощность).

      В реле времени имеется 20 таймеров (их количество можно уменьшить или увеличить до 128, указав нужное число в строке 16 скетча). Один таймер включает только одно устройство (канал) на заданный промежуток времени, не влияя на работу остальных устройств (каналов). Каждому устройству (каналу) можно назначить несколько таймеров, следовательно, включать и выключать каждое из устройств можно несколько раз в сутки и на разную мощность. При отключении питания, таймеры реле не сбиваются, так как их настройки хранятся в энергонезависимой памяти Arduino. Текущее время также не сбивается, так как оно берётся из модуля часов реального времени, который снабжен батарейкой.

      Реле времени можно использовать для включения освещения по времени в доме, квартире, на даче, на производстве и т.д. Можно использовать для включения по времени вентиляции, котлов, обогревателей, полива газонов, систем очистки дачных бассейнов и т.д. Еще одним преимуществом реле времени является создание эффекта присутствия, например, Вас нет дома, но свет утром и вечером включается, а днём и ночью выключается, утром включается радио или телевизор, а ночью включается ночник. Это может заставить задуматься нежелательных «гостей», что дом обитаем и делать там нечего.

      Читайте также:  Калина что с ней делать рецепты

      Нам понадобится:

      • Arduino Uno х 1шт.
      • Дисплей LCD1602 I2C зелёный или синий x 1шт.
      • Trema I2C HUB прямоугольный или квадратный x 1шт.
      • Trema модуль – RTC (часы реального времени) x 1шт.
      • Trema модуль – энкодер x 1шт.
      • Trema Shield x 1шт.

      Для реализации проекта нам необходимо установить библиотеки:

      • LiquidCrystal_I2C для работы с символьными ЖК дисплеями.
      • iarduino_Encoder_tmr для работы с энкодерами через аппаратный таймер.
      • iarduino_RTC для работы с модулями реального времени.
      • Библиотеки EEPROM, Wire и pgmspace используемые в скетче, входят в стандартный набор Arduino IDE.

      О том как устанавливать библиотеки, Вы можете ознакомиться на странице Wiki – Установка библиотек в Arduino IDE .

      Видео:

      Схема подключения:

      Trema модуль RTC и дисплей LCD1602 I2C подключаются к аппаратной шине I2C через Trema I2C HUB, а Trema энкодер можно подключать к любым (цифровым или аналоговым) выводам Arduino, их номера указываются в скетче (в примере использованы выводы D4, D7 и D8). Для удобства подключения используется Trema Shield.

      Приборы подключаются к каналам 1-4:
      • Маломощные приборы с питанием 5 В постоянного тока до 20 мА можно подключать напрямую к одному из каналов.
      • Приборы с питанием до 30 В постоянного тока подключаются через силовой ключ.
      • Приборы с питанием от сети 220 В переменного тока подключаются через твердотельное или электромеханическое реле.

      Алгоритм работы:

      Режим просмотра времени: При включении питания на индикаторе отображается текущее время, дата и день недели. Номера включённых каналов отображаются в правом верхнем углу дисплея.

      Меню: Для входа в меню нужно нажать на энкодер. Далее поворачивая экодер вправо или влево можно выбрать разделы «ТАЙМЕРЫ», «ЧАСЫ», «ВЫХОД», для входа в требуемый раздел нужно опять нажать на энкодер.

      Меню>часы: В данном разделе меню, поворачивая энкодер вправо или влево, можно выбрать разделы «ВРЕМЯ», «ДАТА», «ВЫХОД», для входа в требуемый раздел нужно нажать на энкодер.

      Меню>часы>время: Этот раздел меню предназначен для установки текущего времени. Устанавливаемый в данный момент параметр времени (часы, минуты, секунды) должен мигать. Выбор значения осуществляется поворотом энкодера, а переход к следующему значению, нажатием на энкодер.

      Меню>часы>дата: Этот раздел меню предназначен для установки текущей даты и дня недели. Устанавливаемый в данный момент параметр даты (день, месяц, год, день недели) должен мигать. Выбор значения осуществляется поворотом энкодера, а переход к следующему значению, нажатием на энкодер.

      Меню>таймеры: В данном разделе меню, поворачивая энкодер вправо или влево, можно выбрать один из установленных таймеров (для их редактирования) или разделы «НОВЫЙ ТАЙМЕР», «СТЕРЕТЬ ВСЕ ТАЙМЕРЫ», «ВЫХОД», для входа в требуемый раздел нужно нажать на энкодер. Установленные таймеры отображаются в виде строки из времени их старта/сброса и номера канала «00:00-00:00-0».

      Меню>таймеры>новый таймер: Выбор данного раздела приведёт к созданию нового таймера, на экране отобразится надпись «НОВЫЙ ТАЙМЕР СОЗДАН» после чего Вам будет предложено ввести время старта/сброса и указать номер канала (который будет включаться данным таймером). Данный раздел меню недоступен если установлены все таймеры.

      Меню>таймеры>стереть все таймеры: Выбор данного раздела приведёт к удалению всех таймеров, на экране отобразится надпись «ВСЕ ТАЙМЕРЫ УДАЛЕНЫ». Данный раздел меню недоступен если нет ни одного установленного таймера.

      Меню>таймеры>00:00-00:00-0: Вместо «00:00-00:00-0» будет строка из времени старта/сброса таймера и номера канала которым он управляет. Данный раздел меню предназначен для редактирования выбранного таймера, поворачивая энкодер вправо или влево, можно выбрать разделы «ВРЕМЯ И КАНАЛ», «ПОВТОРЫ», «УРОВЕНЬ СИГНАЛА», «СТЕРЕТЬ ТАЙМЕР», «ВЫХОД», для входа в требуемый раздел нужно нажать на энкодер.

      Меню>таймеры>00:00-00:00-0>время и канал: Этот раздел меню предназначен для установки (редактирования) времени старта/сброса таймера и номера канала которым он управляет. Устанавливаемый в данный момент параметр (час старта, минута старта, час сброса, минута сброса, номер канала) должен мигать. Выбор значения осуществляется поворотом энкодера, а переход к следующему значению, нажатием на энкодер.

      Меню>таймеры>00:00-00:00-0>повторы: Этот раздел меню предназначен для установки (редактирования) повторов таймера по дням недели, в которые он должен срабатывать. Под устанавливаемым в данный момент параметром (ПН, ВТ, СР, ЧТ, ПТ, СБ, ВС) должен мигать курсор. Поворот энкодера устанавливает или сбрасывает стрелочку под устанавливаемым параметром, если она установлена значит в этот день недели таймер будет срабатывать, иначе он срабатывать не будет. Переход к следующему дню недели осуществляется нажатием на энкодер.

      Меню>таймеры>00:00-00:00-0>уровень сигнала: Этот раздел меню предназначен для установки (редактирования) уровня сигнала на выбранном канале при срабатывании таймера. Выбор уровня сигнала от 5% до 100% осуществляется поворотом энкодера с шагом 5%, а нажатие на энкодер приведёт к выходу из данного раздела.

      Меню>таймеры>00:00-00:00-0>стереть таймер: Выбор данного раздела приведёт к удалению выбранного таймера, на экране отобразится надпись «ТАЙМЕР УДАЛЕН».

      Примеры:

      Создание таймера который по будням, между 18:00 и 20:00, будет включать 4 канал с уровнем сигнала 100%:
      • Нажмите на энкодер для входа в меню.
      • Поворачивайте энкодер пока не увидите раздел «ТАЙМЕРЫ» и войдите в него нажав на энкодер.
      • Поворачивайте энкодер пока не увидите раздел «НОВЫЙ ТАЙМЕР» и войдите в него нажав на энкодер.
      • Введите «18:00-20:00 к4». Выбор значений осуществляется поворотом энкодера, а переход к следующему – нажатием.
      • Поворачивайте энкодер пока не увидите раздел «ПОВТОРЫ» и войдите в него нажав на энкодер.
      • Установите галочки под «ПН, ВТ,СР,ЧТ,ПТ» . Установка осуществляется поворотом энкодера, а переход – нажатием.
      • Поворачивайте энкодер пока не увидите раздел «УРОВЕНЬ СИГНАЛА» и войдите в него нажав на энкодер.
      • Установите значение «100%». Выбор значения осуществляется поворотом энкодера, а установка – нажатием.
      • Поворачивайте энкодер пока не увидите раздел «ВЫХОД» и выйдите из редактирования таймера нажав на энкодер.
      • Поворачивайте энкодер пока не увидите раздел «ВЫХОД» и выйдите из раздела «ТАЙМЕРЫ» нажав на энкодер.
      • Поворачивайте энкодер пока не увидите раздел «ВЫХОД» и выйдите из «МЕНЮ» нажав на энкодер.
      Читайте также:  Как сделать ярусные клумбы

      Теперь на экране отображается текущее время, дата и день недели, а по будням, с 18:00 до 20:00 в правом верхнем углу экрана будет отображаться цифра 4, при этом на 4 канале будет установлен уровень логической «1» (сигнал ШИМ со 100% заполнением). На остальных каналах будет уровень логического «0».

      Создание таймера который между 19:00 и 21:00 каждого дня, будет включать 3 канал с уровнем сигнала 50%:
        Повторите все шаги из предыдущего примера, но:

      • Вместо «18:00-20:00 к4» введите «19:00-21:00 к3» .
      • Вместо «ПН, ВТ, СР, ЧТ, ПТ» установите галочки под всеми днями недели «ПН, ВТ, СР, ЧТ, ПТ, СБ, ВС».
      • Вместо «100%» установите уровень сигнала «50%».

      После того как Вы установите два таймера (из 1 и 2 примера): По будням с 18:00 до 19:00 в правом верхнем углу экрана будет отображаться цифра 4, при этом на 4 канале будет установлен уровень логической 1 (сигнал ШИМ со 100% заполнением). По будням с 19:00 до 20:00 в правом верхнем углу экрана будет отображаться цифра 3 и 4, при этом на 3 канале будет установлен сигнал ШИМ с 50% заполнением, а на 4 канале будет установлен уровень логической «1» (сигнал ШИМ со 100% заполнением). По будням с 20:00 до 21:00 и в выходные с 19:00 до 21:00, в правом верхнем углу экрана будет отображаться цифра 3, при этом на 3 канале будет установлен сигнал ШИМ с 50% заполнением.

      Примечание:

      Включение и выключение устройств осуществляется по установленным таймерам только в режиме просмотра времени. Это сделано для того, чтобы устройства «случайно» не включились во время редактирования текущей даты, времени или таймера.

      Код программы:

      Библиотека iarduino_Encoder_tmr использует второй аппаратный таймер, НЕ ВЫВОДИТЕ СИГНАЛЫ ШИМ НА 3 ИЛИ 11 ВЫВОД!

      Привет, Хабр! Представляю вашему вниманию перевод статьи "Timer interrupts" автора E.

      Предисловие

      Плата Arduino позволяет быстро и минимальными средствами решить самые разные задачи. Но там где нужны произвольные интервалы времени (периодический опрос датчиков, высокоточные ШИМ сигналы, импульсы большой длительности) стандартные библиотечные функции задержки не удобны. На время их действия скетч приостанавливается и управлять им становится невозможно.

      В подобной ситуации лучше использовать встроенные AVR таймеры. Как это сделать и не заблудиться в технических дебрях даташитов, рассказывает удачная статья, перевод которой и предлагается вашему вниманию.

      В этой статье обсуждаются таймеры AVR и Arduino и то, как их использовать в Arduino проектах и схемах пользователя.

      Что такое таймер?

      Как и в повседневной жизни в микроконтроллерах таймер это некоторая вещь, которая может подать сигнал в будущем, в тот момент который вы установите. Когда этот момент наступает, вызывается прерывание микроконтроллера, напоминая ему что-нибудь сделать, например выполнить определенный фрагмент кода.

      Таймеры, как и внешние прерывания, работают независимо от основной программы. Вместо выполнения циклов или повторяющегося вызова задержки millis() вы можете назначить таймеру делать свою работу, в то время как ваш код делает другие вещи.

      Итак, предположим, что имеется устройство, которое должно что-то делать, например мигать светодиодом каждые 5 секунд. Если не использовать таймеры, а писать обычный код, то надо установить переменную в момент зажигания светодиода и постоянно проверять не наступил ли момент ее переключения. С прерыванием по таймеру вам достаточно настроить прерывание, и затем запустить таймер. Светодиод будет мигать точно вовремя, независимо от действий основной программы.

      Как работает таймер?

      Он действует путем увеличения переменной, называемой счетным регистром. Счетный регистр может считать до определенной величины, зависящей от его размера. Таймер увеличивает свой счетчик раз за разом пока не достигнет максимальной величины, в этой точке счетчик переполнится и сбросится обратно в ноль. Таймер обычно устанавливает бит флага, чтобы дать вам знать, что переполнение произошло.

      Вы можете проверять этот флаг вручную или можете сделать таймерный переключатель — вызывать прерывание автоматически в момент установки флага. Подобно всяким другим прерываниям вы можете назначить служебную подпрограмму прерывания (Interrupt Service Routine или ISR), чтобы выполнить заданный код, когда таймер переполнится. ISR сама сбросит флаг переполнения, поэтому использование прерываний обычно лучший выбор из-за простоты и скорости.

      Чтобы увеличивать значения счетчика через точные интервалы времени, таймер надо подключить к тактовому источнику. Тактовый источник генерирует постоянно повторяющийся сигнал. Каждый раз, когда таймер обнаруживает этот сигнал, он увеличивает значение счетчика на единицу. Поскольку таймер работает от тактового источника, наименьшей измеряемой единицей времени является период такта. Если вы подключите тактовый сигнал частотой 1 МГц, то разрешение таймера (или период таймера) будет:

      T = 1 / f (f это тактовая частота)
      T = 1 / 1 МГц = 1 / 10^6 Гц
      T = (1 ∗ 10^-6) с

      Таким образом разрешение таймера одна миллионная доля секунды. Хотя вы можете применить для таймеров внешний тактовый источник, в большинстве случаев используется внутренний источник самого чипа.

      Типы таймеров

      В стандартных платах Arduino на 8 битном AVR чипе имеется сразу несколько таймеров. У чипов Atmega168 и Atmega328 есть три таймера Timer0, Timer1 и Timer2. Они также имеют сторожевой таймер, который можно использовать для защиты от сбоев или как механизм программного сброса. Вот некоторые особенности каждого таймера.

      Timer0:
      Timer0 является 8 битным таймером, это означает, что его счетный регистр может хранить числа вплоть до 255 (т. е. байт без знака). Timer0 используется стандартными временными функциями Arduino такими как delay() и millis(), так что лучше не запутывать его если вас заботят последствия.

      Timer1:
      Timer1 это 16 битный таймер с максимальным значением счета 65535 (целое без знака). Этот таймер использует библиотека Arduino Servo, учитывайте это если применяете его в своих проектах.

      Timer2:
      Timer2 — 8 битный и очень похож на Timer0. Он используется в Arduino функции tone().

      Timer3, Timer4, Timer5:
      Чипы ATmega1280 и ATmega2560 (установлены в вариантах Arduino Mega) имеют три добавочных таймера. Все они 16 битные и работают аналогично Timer1.

      Конфигурация регистров

      Для того чтобы использовать эти таймеры в AVR есть регистры настроек. Таймеры содержат множество таких регистров. Два из них — регистры управления таймера/счетчика содержат установочные переменные и называются TCCRxA и TCCRxB, где x — номер таймера (TCCR1A и TCCR1B, и т. п.). Каждый регистр содержит 8 бит и каждый бит хранит конфигурационную переменную. Вот сведения из даташита Atmega328:

      Читайте также:  Как сшить чехлы на кресло своими руками
      TCCR1A
      Бит 7 6 5 4 3 2 1
      0x80 COM1A1 COM1A0 COM1B1 COM1B0 WGM11 WGM10
      ReadWrite RW RW RW RW R R RW RW
      Начальное значение
      TCCR1B
      Бит 7 6 5 4 3 2 1
      0x81 ICNC1 ICES1 WGM13 WGM12 CS12 CS11 CS10
      ReadWrite RW RW R RW RW RW RW RW
      Начальное значение

      Наиболее важными являются три последние бита в TCCR1B: CS12, CS11 и CS10. Они определяют тактовую частоту таймера. Выбирая их в разных комбинациях вы можете приказать таймеру действовать на различных скоростях. Вот таблица из даташита, описывающая действие битов выбора:

      CS12 CS11 CS10 Действие
      Нет тактового источника (Timer/Counter остановлен)
      1 clk_io/1 (нет деления)
      1 clk_io/8 (делитель частоты)
      1 1 clk_io/64 (делитель частоты)
      1 clk_io/256 (делитель частоты)
      1 1 clk_io/1024 (делитель частоты)
      1 1 Внешний тактовый источник на выводе T1. Тактирование по спаду
      1 1 1 Внешний тактовый источник на выводе T1. Тактирование по фронту

      По умолчанию все эти биты установлены на ноль.

      Допустим вы хотите, чтобы Timer1 работал на тактовой частоте с одним отсчетом на период. Когда он переполнится, вы хотите вызвать подпрограмму прерывания, которая переключает светодиод, подсоединенный к ножке 13, в состояние включено или выключено. Для этого примера запишем Arduino код, но будем использовать процедуры и функции библиотеки avr-libc всегда, когда это не делает вещи слишком сложными. Сторонники чистого AVR могут адаптировать код по своему усмотрению.

      Сначала инициализируем таймер:

      Регистр TIMSK1 это регистр маски прерываний Таймера/Счетчика1. Он контролирует прерывания, которые таймер может вызвать. Установка бита TOIE1 приказывает таймеру вызвать прерывание когда таймер переполняется. Подробнее об этом позже.

      Когда вы устанавливаете бит CS10, таймер начинает считать и, как только возникает прерывание по переполнению, вызывается ISR(TIMER1_OVF_vect). Это происходит всегда когда таймер переполняется.

      Дальше определим функцию прерывания ISR:

      Сейчас мы можем определить цикл loop() и переключать светодиод независимо от того, что происходит в главной программе. Чтобы выключить таймер, установите TCCR1B=0 в любое время.

      Как часто будет мигать светодиод?

      Timer1 установлен на прерывание по переполнению и давайте предположим, что вы используете Atmega328 с тактовой частотой 16 МГц. Поскольку таймер 16-битный, он может считать до максимального значения (2^16 – 1), или 65535. При 16 МГц цикл выполняется 1/(16 ∗ 10^6) секунды или 6.25e-8 с. Это означает что 65535 отсчетов произойдут за (65535 ∗ 6.25e-8 с) и ISR будет вызываться примерно через 0,0041 с. И так раз за разом, каждую четырехтысячную секунды. Это слишком быстро, чтобы увидеть мерцание.

      Если мы подадим на светодиод очень быстрый ШИМ сигнал с 50% заполнением, то свечение будет казаться непрерывным, но менее ярким чем обычно. Подобный эксперимент показывает удивительную мощь микроконтроллеров — даже недорогой 8-битный чип может обрабатывать информацию намного быстрей чем мы способны обнаружить.

      Делитель таймера и режим CTC

      Чтобы управлять периодом, вы можете использовать делитель, который позволяет поделить тактовый сигнал на различные степени двойки и увеличить период таймера. Например, вы бы хотели мигания светодиода с интервалом одна секунда. В регистре TCCR1B есть три бита CS устанавливающие наиболее подходящее разрешение. Если установить биты CS10 и CS12 используя:

      то частота тактового источника поделится на 1024. Это дает разрешение таймера 1/(16 ∗ 10^6 / 1024) или 6.4e-5 с. Теперь таймер будет переполняться каждые (65535 ∗ 6.4e-5с) или за 4,194с. Это слишком долго.

      Но есть и другой режим AVR таймера. Он называется сброс таймера по совпадению или CTC. Вместо счета до переполнения, таймер сравнивает свой счетчик с переменой которая ранее сохранена в регистре. Когда счет совпадет с этой переменной, таймер может либо установить флаг, либо вызвать прерывание, точно так же как и в случае переполнения.

      Чтобы использовать режим CTC надо понять, сколько циклов вам нужно, чтобы получить интервал в одну секунду. Предположим, что коэффициент деления по-прежнему равен 1024.

      Расчет будет следующий:

      Вы должны добавить дополнительную единицу к числу отсчетов потому что в CTC режиме при совпадении счетчика с заданным значением он сбросит сам себя в ноль. Сброс занимает один тактовый период, который надо учесть в расчетах. Во многих случаях ошибка в один период не слишком значима, но в высокоточных задачах она может быть критичной.

      Функция настройки setup() будет такая:

      Также нужно заменить прерывание по переполнению на прерывание по совпадению:

      Сейчас светодиод будет зажигаться и гаснуть ровно на одну секунду. А вы можете делать все что угодно в цикле loop(). Пока вы не измените настройки таймера, программа никак не связана с прерываниями. У вас нет ограничений на использование таймера с разными режимами и настройками делителя.

      Вот полный стартовый пример который вы можете использовать как основу для собственных проектов:

      Помните, что вы можете использовать встроенные ISR функции для расширения функций таймера. Например вам требуется опрашивать датчик каждые 10 секунд. Но установок таймера, обеспечивающих такой долгий счет без переполнения нет. Однако можно использовать ISR чтобы инкрементировать счетную переменную раз в секунду и затем опрашивать датчик когда переменная достигнет 10. С использованием СТС режима из предыдущего примера прерывание могло бы выглядеть так:

      Поскольку переменная будет модифицироваться внутри ISR она должна быть декларирована как volatile. Поэтому, при описании переменных в начале программы вам надо написать:

      Послесловие переводчика

      В свое время эта статья сэкономила мне немало времени при разработке прототипа измерительного генератора. Надеюсь, что она окажется полезной и другим читателям.

      Комментарии запрещены.

      Присоединяйся