Какие силы действуют между проводами с током

Если взять два параллельных проводника с токами, расположенных на расстоянии а друг от друга, то вокруг каждого из них будет возникать собственное магнитное поле, причем проводник с током I1 окажется в магнитном поле проводника с током I2 и наоборот. В результате на проводники будут действовать электромагнитные силы F1 и F2, направление которых определяется по правилу левой руки.

Þ провода с токами одинакового направления притягиваются друг к другу с силой F.

Намагничивание ферромагнитных материалов

У ферромагнетиков . Они используются во всех электрических машинах. Если ввести ферромагнитный сердечник в катушку с током, то магнитное поле этой катушки увеличивается в сотки и в тысячи раз.

В ферромагнетиках имеются произвольно намагниченные области, которые называют доменами, или области спонтанного намагничивания. Магнитные поля их направлены хаотически, а результирующее магнитное поле равно «0».

Если такой ферромагнетик поместить во внешнее магнитное поле, например – в катушку с током, то домены будут разворачиваться в направлении внешнего магнитного поля, и результирующее поле резко возрастает. При этом говорят, что ферромагнетик намагнитился.

Процесс намагничивания ферромагнетика, помещенного в катушку с током, можно объяснить с помощью кривой намагничивания.

– кривая Столетова

Под действием внешнего поля, создаваемого током в катушке, домены начнут ориентироваться в направлении внешнего поля.

Кривую можно разбить на три участка:

1. Участок ОА – здесь магнитная индукция растет пропорционально к увеличению напряженности магнитного поля;

2. Участок АВ (колено кривой) – здесь рост магнитной индукции замедляется, т.к. большинство доменов уже сориентированы в направлении внешнего поля; пропорциональность между В и Н нарушается;

3. Участок ВС – здесь все домены сориентированы в направлении внешнего поля, рост магнитной индукции прекращается. Наступает магнитное насыщения.

Перемагничивание ферромагнетиков

Если после достижения насыщения сердечника уменьшать ток в катушке (напряженность внешнего поля), то магнитная индукция также будет уменьшаться, т.к. часть доменов вернется в положение, которое они занимали до намагничивания. Однако другая часть останется сориентированной в направлении внешнего магнитного поля.

В точке А внешнее магнитное поле равно нулю, а магнитная индукция не равна нулю. Это значение магнитной индукции называется остаточной магнитной индукцией.

Чтобы размагнитить сердечник необходимо приложить внешнее поле обратного направления и довести его до значения, определяемого отрезком ОВ, который называют коэрцитивной силой. Если продолжать увеличивать внешнее поле, то вновь получим насыщение.

Выводы:

1. Изменение магнитной индукции отстает (запаздывает) во времени от изменения напряженности внешнего поля.

2. Это запаздывание называется магнитным гистерезисом, а кривая намагничивания, характеризующая этот процесс, называется петлей гистерезиса.

3. Перемагничивание ферромагнетиков связано с затратой энергии, которая превращается в тепло. Потери энергии, связанные с процессом перемагничивания, называются потерями гистерезиса.

Величина энергии, затраченной на 1 цикл перемагничивания, пропорциональна площади петли гистерезиса.

Читайте также:  Клубника на зиму рецепты с фото

При перемагничивании происходит изменение размеров тел (10 -6 ). Это явление называется магнитострикцией.

Магнитожесткие и магнитомягкие материалы

Магнитомягкие – хорошо намагничиваются и хорошо размагничиваются. Площадь петли гистерезиса у них невелика. Коэрцитивная сила небольшая. Имеют большую магнитную проницаемость.

К ним относится электротехническая сталь, трансформаторная сталь, пермолон (железо с никелем). Они используются во всех электромагнитах.

Магнитожесткие – плохо намагничиваются и плохо размагничиваются. Характеризуются большой площадью петли гистерезиса, большой коэрцитивной силой и остаточной магнитной индукцией.

К ним относятся углеродистые, вольфрамовые, кобальтовые и другие сплавы.

Магнитные цепи

Магнитной цепью называют устройство, в котором замыкается магнитный поток. Бывают разветвленные и неразветвленные.

Неразветвленная цепь Разветвленная цепь

Кроме того, магнитные цепи бывают однородные и неоднородные. Однородные цепи изготавливают из одного материала, они имеют одинаковую площадь сечения.

Закон Ома и закон Кирхгофа для магнитных цепей

Закон Ома: магнитное напряжение на любом участке т.к. .

Если , то , где – магнитное сопротивление. .

Магнитный поток прямо пропорционален магнитному напряжению и обратно пропорционален магнитному сопротивлению.

Закон Кирхгофа

1 правило: алгебраическая сумма магнитных токов в точке разветвления равна 0.

2 правило: основано на законе полного тока .

Алгебраическая сумма МДС равна алгебраической сумме магнитных напряжений на отдельных участках цепи.

.

Закон Ома и закон Кирхгофа для расчета магнитных цепей не используют, т.к. магнитное сопротивление, в отличие от электрического, зависит от величины магнитного напряжения.

Для расчета магнитных цепей используют закон полного тока.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10457 – | 7917 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Вокруг, каждого из деух параллельных проводов с токами (рис. 3-9) возникает магнитное поле. Поэтому на первый провод, находящийся в магнитном поле тока будет действовать электромагнитная сила а на второй провод, находящийся в поле тока — сила . Опыты показывают, что силы всегда равны друг другу, т. е. Эти силы часто называют электродинамическими.

Пользуясь правилами буравчика и левой руки, легко установить, что провода с токами одного направления притягиваются, а провода с токами разных направлений отталкиваются друг от друга (рис. 3-9).

Рис. 3-9. Электромагнитные силы взаимодействия между проводами с током.

Если каждый из двух параллельно расположенных в вакууме проводов имеет длину l, значительно большую расстояния а между ними а), то сила F, действующая на каждый из проводов, пропорциональна произведению токов, идущих по проводам, их длине и обратно пропорциональна расстоянию между ними

При равенстве токов в проводах сила, действующая на каждый из проводов,

Коэффициент пропорциональности , называемый магнитной постоянной, зависит от принятой системы единиц (3-9).

В соответствии с формулами (3-1) и (3-7) силы, действующие на провода с током, могут быть выражены:

Читайте также:  Как сделать лебедку на мтз

а магнитные индукции на расстоянии а от проводов с токами согласно (3-2)

или в общем виде

Таким образом, магнитная индукция во всех точках на расстоянии а от оси провода имеет одинаковое значение.

Из (3-8) магнитная постоянная

откуда определяется единица ее измерения

Единица ом-секунда (Ом•с) называется генри (Г), поэтому единицей магнитной постоянной будет генри на метр (Г/м).

Магнитная постоянная в системе СИ имеет значение

(3-9)

Опыт показывает, что проводники, по которым текут электрические токи, взаимодействуют друг с другом. Так, например, два тонких прямолинейных параллельных проводника притягиваются друг к другу, если направления протекающих в них токов совпадают, и отталкиваются, если направления токов противоположны (рис. 2).

Рис. 2. Взаимодействие параллельных проводников с током.

Определяемая экспериментально сила взаимодействия проводников, отнесенная к единице длины проводника (т.е., действующая на 1м проводника) вычисляется по формуле:

,

где и – силы токов в проводниках, – расстояние между ними в системе СИ, – так называемая, магнитная постоянная ().

Связь между электрической и магнитной постоянными определяется соотношением:

где = 3·10 8 м/с – скорость света в вакууме.

На основании эмпирической формулы для установлена единица силы тока в системе СИ – Ампер (А).

Ампер – сила такого неизменяющегося тока, который, проходя по двум прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызывает силу взаимодействия между ними, равную 2·10 -7 Н на 1 м длины.

Итак, при протекании электрического тока по проводнику в окружающем его пространстве происходят какие-то изменения, что заставляет проводники с током взаимодействовать, а магнитную стрелку вблизи проводника с током поворачиваться. Таким образом, мы пришли к выводу, что взаимодействие между магнитами, проводником и током, между проводниками с током осуществляется посредством материальной среды, получившей название магнитного поля. Из опыта Эрстеда следует, что магнитное поле имеет направленный характер, поскольку угол поворота стрелки зависит от величины и направления протекающего тока. Это подтверждается также и опытами по взаимодействию проводников с током.

1.3. Индукция магнитного поля

Рассмотрим взаимодействие прямого проводника с током с магнитным полем подковообразного магнита. В зависимости от направления тока проводник втягивается или выталкивается из магнита (рис. 3).

Рис. 3. Взаимодействие прямого проводника с током с магнитным полем подковообразного магнита.

Мы пришли к заключению, что на проводник с током, помещенный в магнитное поле, действует сила. Причем эта сила зависит от длины проводника и величины протекающего по нему тока, а также от его ориентации в пространстве. Можно найти такое положение проводника в магнитном поле, когда эта сила будет максимальной. Это и позволяет ввести понятие силовой характеристики магнитного поля.

Силовой характеристикой магнитного поля является физическая величина, определяемая в данном случае как

,

Она получила название индукции магнитного поля. Здесь – максимальная сила, действующая на проводник с током в магнитном поле,– длина проводника,– сила тока в нем.

Читайте также:  Как сделать мотовелосипед своими руками

Единица измерения вектора магнитной индукции – тесла .

1 Тл – индукция такого магнитного поля, которое действует с силой 1 Н на каждый метр длины прямолинейного проводника, расположенного перпендикулярно направлению поля, если по проводнику течет ток 1 А:

Индукция магнитного поля – величина векторная. Направление вектора магнитной индукции в нашем случае связано с направлениямииправилом левой руки (рис. 4):

если вытянутые пальцы направить по направлению тока в проводнике, а силовые линии магнитного поля будут входить в ладонь, то отогнутый большой палец укажет направление силы , действующей на проводник с током со стороны магнитного поля.

Рис. 4. Правило левой руки

Численное значение вектора можно определить и через момент сил, действующих на рамку с током в магнитном поле:

,

– максимальный вращательный момент, действующий на рамку с током в магнитном поле, – площадь рамки,– сила тока в ней.

За направление вектора в этом случае (рис. 5) принимается направление нормали к плоскости витка, выбранное так, чтобы, глядя навстречу , ток по витку протекал бы против часовой стрелки.

Единица измерения вектора магнитной индукции – тесла .

За направление вектора в этом случае (рис. 5) принимается направление нормали к плоскости витка, выбранное так, чтобы, глядя навстречу , ток по витку протекал бы против часовой стрелки.

Рис. 5. Ориентирующее действие магнитного поля на рамку с током.

Силовые линии магнитного поля (линии индукции магнитного поля) – это линии, в каждой точке которых вектор направлен по касательной к ним.

Модуль магнитной индукции пропорционален густоте силовых линий, т.е. числу линий, пересекающих поверхность единичной площади, перпендикулярную этим линиям.

В таблице 1 приведены картины силовых линий для различных магнитных полей.

Так, например, направление линий магнитной индукции прямого провода с током определяется по правилу буравчика (или «правого винта»):

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

Таким образом, силовые линии магнитного поля бесконечного прямого проводника с током представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. С увеличением радиуса r окружности модуль вектора индукции магнитного поля уменьшается.

Для постоянного магнита за направление силовых линий магнитного поля принято направление от северного полюса магнита N к южному S.

Картина линий индукции магнитного поля для соленоида поразительно похожа на картину линий индукции магнитного поля для постоянного магнита. Это навело на мысль о том, что внутри магнита имеется много маленьких контуров с током. Соленоид тоже состоит из таких контуров – витков. Отсюда и сходство магнитных полей.

Комментарии запрещены.

Присоединяйся