Какой величине обратно пропорциональна индуктивность соленоида

Читайте также:

  1. Индуктивность .
  2. Магнитное поле тороида, соленоида

2.5.

2.4.

Взаимодействие движущихся зарядов называется магнитным.

Магнитное поле. Магнитное взаимодействие осуществляется посредством магнитного поля. Магнитное поле – особая форма существования материи.

Свойства магнитного поля:

· порождается движущимися зарядами (электрическим током) или переменным электрическим полем;

· обнаруживается по действию на электрический ток или магнитную стрелку.

Вектор магнитной индукции. Опыты показывают, что магнитное поле производит на контур с током и магнитную стрелку ориентирующее действие, вынуждая их устанавливаться в определенном направлении. Поэтому для характеристики магнитного поля должна быть использована величина, направление которой связано с ориентацией контура с током или магнитной стрелки в магнитном поле. Эта величина называется вектором магнитной индукции В.

Модуль вектора В равен отношению максимального вращающего момента, действующего на рамку с током в данной точке поля, к произведению силы тока I и площади контура S.

На проводник с током, находящийся в магнитном поле, действует сила, равная

F = I·L·B·sina, гдеI – сила тока в проводнике; B – модуль вектора индукции магнитного поля; L – длина проводника, находящегося в магнитном поле; a – угол между вектором магнитного поля и направлением тока в проводнике.

Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.

Закон Био—Савара—Лапласа — физический закон для определения модуля вектора магнитной индукции в любой точке магнитного поля, порождаемого постоянным электрическим током на некотором рассматриваемом участке.

Пусть постоянный ток течёт по контуру γ, находящемуся в вакууме, — точка, в которой ищется поле, тогда индукция магнитного поля в этой точке выражается интегралом

Направление перпендикулярно и , то есть перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление вращения головки винта дает направление , если поступательное движение буравчика соответствует направлению тока в элементе. Модуль вектора определяется выражением

В = µµ (I/ 2пR) – индукция весьма длинного прямолинейного проводника

В = µµnl – индукция достаточно длинного соленоида (соленоид – цилиндрическая катушка), где n – число витков, µ0 – магнитная постоянная, µ – относительная магнитная проницаемость среды

Действие магнитного поля на проводник с током означает, что магнитное поле действует на движущиеся электрические заряды.

Сила, действующая со стороны магнитного поля на одну заряженную частицу, движущуюся со скоростью под углом к вектору индукции, равна

.(52.2)

Эту силу называют силой Лоренца.

На проводник с током в магнитном поле действуют силы, которые определяются с помощью закона Ампера. Если проводник не закреплен, то под действием силы Ампера он в магнитном поле будет перемещаться. Значит, магнитное поле совершает работу по перемещению проводника с током.
Для вычисления этой работы рассмотрим проводник длиной l с током I (он может свободно двигаться), который помещен в однородное внешнее магнитное поле, которое перпендикулярно плоскости контура. Сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера, рассчитывается по формуле

Под действием данной силы проводник передвинется параллельно самому себе на отрезок dx из положения 1 в положение 2. Работа, которая совершается магнитным полем, равна

так как ldx=dS — площадь, которую пересекает проводник при его перемещении в магнитном поле, BdS=dФ — поток вектора магнитной индукции, который пронизывает эту площадь. Значит, (1)
т. е. работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником. Данная формула справедлива и для произвольного направления вектора В.
Рассчитаем работу по перемещению замкнутого контура с постоянным током I в магнитном поле. Будем считать, что контур М перемещается в плоскости чертежа и в результате бесконечно малого перемещения перейдет в положение М’, изображенное на рис. 2 штриховой линией. Направление тока в контуре (по часовой стрелке) и магнитного поля (перпендикулярно плоскости чертежа — за чертеж или от нас) дано на рисунке. Контур М условно разобьем на два соединенных своими концами проводника: AВС и CDА.
Работа dA, которая совершается силами Ампера при иссследуемом перемещении контура в магнитном поле, равна алгебраической сумме работ по перемещению проводников AВС (dA1) и CDA (dA2), т. е. (2)
Силы, которые приложенны к участку CDA контура, образуют острые углы с направлением перемещения, поэтому совершаемая ими работа dA2>0. .Используя (1), находим, эта работа равна произведению силы тока I в нашем контуре на пересеченный проводником CDA магнитный поток. Проводник CDA пересекает при своем движении поток dФ сквозь поверхность, выполненную в цвете, и поток dФ2, который пронизывает контур в его конечном положении. Значит, (3)
Силы, которые действуют на участок AВС контура, образуют тупые углы с направлением перемещения, значит совершаемая ими работа dA1

Читайте также:  Какой клей для поролона лучше

Магнитный поток — поток как интеграл вектора магнитной индукции через конечную поверхность . Определяется через интеграл по поверхности

при этом векторный элемент площади поверхности определяется как

где — единичный вектор, нормальный к поверхности.

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:

где α — угол между вектором магнитной индукции и нормалью к плоскости площади.

Индуктивность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.

Величина магнитного потока, пронизывающего одновитковый контур, связана с величиной тока следующим образом: где — индуктивность витка. В случае катушки, состоящей из N витков предыдущее выражение модифицируется к виду:

, где — сумма магнитных потоков через все витки (это так называемый полный поток, называемый в электротехнике потокосцеплением), а — уже индуктивность многовитковой катушки. называют потокосцеплением или полным магнитным потоком.

Соленоид — длинная, тонкая катушка, то есть катушка, длина которой намного больше, чем её диаметр (также в дальнейших выкладках здесь подразумевается, что толщина обмотки намного меньше, чем диаметр катушки). При этих условиях и без использования магнитного материала плотность магнитного потока внутри катушки является фактически постоянной и (приближенно) равна

где − магнитная постоянная, − число витков, − ток и − длина катушки.

Формула для индуктивности соленоида (без сердечника):

Если катушка внутри полностью заполнена магнитным материалом (сердечником), то индуктивность отличается на множитель — относительную магнитную проницаемость сердечника:

Дата добавления: 2015-06-04 ; Просмотров: 3689 ; Нарушение авторских прав? ;

Содержание

Соленоид на постоянном токе [ править | править код ]

Если длина соленоида намного больше его диаметра и не используется магнитный материал, то при протекании тока по обмотке внутри катушки создаётся магнитное поле, направленное вдоль оси, которое однородно и для постоянного тока по величине равно [1] :

B = μ 0 n I nI> (СИ) ( 1 ) ,

B = 4 π c n I >nI> (СГС) ( 2 ) ,

где μ 0 > — магнитная проницаемость вакуума, n = N / l — число витков на единицу длины соленоида, N — число витков, l — длина соленоида, I — ток в обмотке.

Читайте также:  Клей для плинтуса дюрополимер

Вследствие того, что две половины бесконечного соленоида в точке их соединения вносят одинаковый вклад в магнитное поле, магнитная индукция полубесконечного соленоида у его края вдвое меньше, чем в объёме. То же самое можно сказать о поле на краях конечного, но достаточно длинного соленоида [1] :

B K P = 1 2 μ 0 n I >=<2>>mu _<0>nI> (СИ) ( 3 ) .

При протекании тока соленоид запасает энергию, равную работе, которую необходимо совершить для установления текущего тока I . Величина этой энергии равна

E c o x p = Ψ I 2 = L I 2 2 ( 4 ) , >= <over 2>=<> over 2>qquad (4),>

где Ψ = N Φ — потокосцепление, Φ — магнитный поток в соленоиде, L — индуктивность соленоида.

При изменении тока в соленоиде возникает ЭДС самоиндукции, значение которой

ε = − L d I d t ( 5 ) qquad (5)> .

Индуктивность соленоида [ править | править код ]

Индуктивность соленоида выражается следующим образом:

L = μ 0 n 2 V = μ 0 4 π z 2 l n^<2>V!=<0>><4pi >>>>> (СИ) ( 6 ) , L = 4 π n 2 V = z 2 l <2>V!=<2>>>> (СГС) ( 7 ) ,

где μ 0 > — магнитная проницаемость вакуума, n = N / l — число витков на единицу длины соленоида, N — число витков, V = S l — объём соленоида, z = π d N — длина проводника, намотанного на соленоид, S = π d 2 / 4 /4> — площадь поперечного сечения соленоида, l — длина соленоида, d — диаметр витка.

Без использования магнитного материала магнитная индукция B в пределах соленоида является фактически постоянной и равна

B = μ 0 N l I = μ 0 n I ( 8 ) , >I=mu _<0>nIqquad (8),>

где I — сила тока. Пренебрегая краевыми эффектами на концах соленоида, получим, что потокосцепление Ψ через катушку равно магнитной индукции B , умноженной на площадь поперечного сечения S и число витков N :

Ψ = B S N = μ 0 N 2 I S / l = μ 0 n 2 V I = L I ( 9 ) . N^<2>IS/l=mu _<0>n^<2>VI=LIqquad (9).>

Отсюда следует формула для индуктивности соленоида

L = μ 0 N 2 S / l = μ 0 n 2 V ( 10 ) , N^<2>S/l=mu _<0>n^<2>Vqquad (10),> эквивалентная предыдущим двум формулам.

Соленоид на переменном токе [ править | править код ]

При переменном токе соленоид создаёт переменное магнитное поле. Если соленоид используется как электромагнит, то на переменном токе величина силы притяжения изменяется. В случае якоря из магнитомягкого материала направление силы притяжения не изменяется. В случае магнитного якоря направление силы меняется. На переменном токе соленоид имеет комплексное сопротивление, активная составляющая которого определяется активным сопротивлением обмотки, а реактивная составляющая определяется индуктивностью обмотки.

Применение [ править | править код ]

Соленоиды постоянного тока чаще всего применяются как поступательный силовой электропривод. В отличие от обычных электромагнитов обеспечивает большой ход. Силовая характеристика зависит от строения магнитной системы (сердечника и корпуса) и может быть близка к линейной.

Соленоиды приводят в движение ножницы для отрезания билетов и чеков в кассовых аппаратах, язычки замков, клапаны в двигателях, гидравлических системах и пр. Один из самых известных примеров — «тяговое реле» автомобильного стартёра. Большое распространение соленоиды получили в энергетике, найдя широкое применение в приводах высоковольтных выключателей.

Соленоиды на переменном токе применяются в качестве индуктора для индукционного нагрева в индукционных тигельных печах.

Цель работы – определение индуктивности соленоида по его сопротивлению переменному току.

Приборы и принадлежности: исследуемый соленоид, звуковой генератор, электронный осциллограф, миллиамперметр переменного тока, соединительные провода.

Явление самоиндукции. Индуктивность

Явление электромагнитной индукции наблюдается во всех случаях, когда изменяется магнитный поток, пронизывающий проводящий контур. В частности, если электрический ток течет в проводящем контуре, то он создает пронизывающий этот контур магнитный поток Ф.

При изменении силы тока I в любом контуре изменяется и магнитный поток Ф, вследствие этого в контуре возникает электродвижущая сила (ЭДС) индукции, которая вызывает дополнительный ток (рис. 1, где 1 – проводящий замкнутый контур, 2 – силовые линии магнитного поля, создаваемого током контура). Это явление называется самоиндукцией, а дополнительный ток, вызываемый ЭДС самоиндукции, – экстратоком самоиндукции.

Читайте также:  Какие плакаты из перечисленных относятся к запрещающим

Явление самоиндукции наблюдается в любой замкнутой электрической цепи, в которой протекает элетрический ток, при замыкании или размыкании этой цепи.

Рассмотрим, от чего зависит величина ЭДС ε s самоиндукции. Магнитный поток Ф, пронизывающий замкнутый проводящий контур, пропорционален магнитной индукции В магнитного поля, создаваемого током, протекающим в контуре, а индукция В пропорциональна силе тока.

Рис. 1

Тогда магнитный поток Ф пропорционален силе тока, т.е.

где L – индуктивность контура, Гн (Генри).

Индуктивностью контура L называется скалярная физическая величина, равная отношению магнитного потока Ф, пронизывающего данный контур, к величине силы тока, текущего в контуре.

Генри – это индуктивность такого контура, в котором при силе тока в 1А возникает магнитный поток 1Вб, т.е. 1 Гн = 1 .

Согласно закону электромагнитной индукции

. (3)

Подставляя (1) в (3), получим ЭДС самоиндукции:

. (4)

Формула (4) справедлива при L=const.

Опыт показывает, что при увеличении индуктивности L в электрической цепи сила тока в цепи увеличивается постепенно (см. рис. 2), а при уменьшении L сила тока уменьшается так же медленно (рис. 3).

Сила тока в электрической цепи при замыкании изменяется по закону , а при размыкании – по закону .

Кривые изменения силы тока показаны на рис. 2 и 3.

Рис. 2 Рис.3

Индуктивность контура зависит от формы, размеров и деформации контура, от магнитного состояния среды, в которой находится контур, а также от других факторов.

Найдем индуктивность соленоида. Соленоид – это цилиндрическая трубка, изготовленная из немагнитного непроводящего материала, на которую плотно, виток к витку, намотана тонкая металлическая проводящая проволока. На рис. 4 показан разрез соленоида вдоль цилиндрической трубки по диаметру (1 – силовые линии магнитного поля).

Рис. 4

Длина l соленоида намного больше, чем диаметр d , т.е.
l >> d . Если l d , то соленоид можно рассматривать как короткую катушку.

Диаметр тонкой проволоки намного меньше, чем диаметр соленоида. Для увеличения индуктивности внутрь соленоида помещают ферромагнитный сердечник с магнитной проницаемостью μ. Если l >>d, то при протекании тока внутри соленоида возбуждается однородное магнитное поле, индукция которого определяется формулой

где μо = 4π·10 -7 Гн/м – магнитная постоянная; n = N/ l – число витков единицы длины соленоида; N – число витков соленоида.

Вне соленоида магнитное поле практически равно нулю. Поскольку соленоид имеет N витков, то полный магнитный поток ψ (потокосцепление), пронизывающий поперечное сечение S соленоида, равен

где Ф = BS – поток, пронизывающий один виток соленоида.

Подставляя (5) в (6) и с учётом того, что N = n l , получим

С другой стороны,

Сравнивая (7) и (8), получим

L = μо μ n 2 lS = μо μ S . (9)

Площадь сечения соленоида равна

. (10)

С учётом (10) формула (9) запишется в виде

L = μо μ . (11)

Определить индуктивность соленоида можно, подключив соленоид в электрическую цепь переменного тока с частотой ω. Тогда полное сопротивление (импеданс) определится формулой

, (12)

где R – активное сопротивление, Ом; = х L – индуктивное сопротивление; = хс – ёмкостное сопротивление конденсатора с

Если в электрической цепи отсутствует конденсатор, т.е. электроёмкость цепи мала, то хс L и формула (12) будет иметь вид

. (13)

Тогда закон Ома для переменного тока запишется в виде

, (14)

где Im , Um – амплитудные значения силы тока и напряжения.

Так как ω = 2πν, где ν – частота колебаний переменного тока, то (14) примет вид

. (15)

Из (15) получим рабочую формулу для определения индуктивности:

. (16)

Ход работы

Для выполнения работы собрать цепь по схеме рис. 5.

1. Установить на звуковом генераторе частоту колебаний, указанную преподавателем.

2. Измерить с помощью осциллографа амплитуду напряжения Um и частоту .

3. С помощью миллиамперметра определить действующее значение силы тока в цепи ; пользуясь соотношением и решая его относительно Ie , определить амплитуду тока в цепи.

“>

Комментарии запрещены.

Присоединяйся