Каков механизм собственной и примесной проводимости полупроводников

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

Примесной проводимостью полупроводников называется проводимость, обусловленная наличием примесей в полупроводнике.

Примесными центрами могут быть:

1. атомы или ионы химических элементов, внедренные в решетку полупроводника;

2. избыточные атомы или ионы, внедренные в междоузлия решетки;

3. различного рода другие дефекты и искажения в кристаллической решетке: пустые узлы, трещины, сдвиги, возникающие при деформациях кристаллов, и др.

Изменяя концентрацию примесей, можно значительно увеличивать число носителей зарядов того или иного знака и создавать полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителей.

Примеси можно разделить на донорные (отдающие) и акцепторные (принимающие).

Рассмотрим механизм электропроводности полупроводника с донорной пятивалентной примесью мышьяка As 5+ , которую вводят в кристалл, например, кремния. Пятивалентный атом мышьяка отдает четыре валентных электрона на образование ковалентных связей, а пятый электрон оказывается незанятым в этих связях (рис. 1).

Энергия отрыва (энергия ионизации) пятого валентного электрона мышьяка в кремнии равна 0,05 эВ = 0,08·10 -19 Дж, что в 20 раз меньше энергии отрыва электрона от атома кремния. Поэтому уже при комнатной температуре почти все атомы мышьяка теряют один из своих электронов и становятся положительными ионами. Положительные ионы мышьяка не могут захватить электроны соседних атомов, так как все четыре связи у них уже укомплектованы электронами. В этом случае перемещения электронной вакансии — "дырки" не происходит и дырочная проводимость очень мала, т.е. практически отсутствует. Небольшая часть собственных атомов полупроводника ионизирована, и часть тока образуется дырками, т.е. донорные примеси — это примеси, поставляющие электроны проводимости без возникновения равного количества подвижных дырок. В итоге мы получаемполупроводник с преимущественно электронной проводимостью, называемый полупроводником n-типа.

В случае акцепторной примеси, например, трехвалентного индия In 3+ атом примеси может дать свои три электрона для осуществления ковалентной связи только с тремя соседними атомами кремния, а одного электрона «недостает» (рис. 2). Один из электронов соседних атомов кремния может заполнить эту связь, тогда атом In станет неподвижным отрицательным ионом, а на месте ушедшего от одного из атомов кремния электрона образуется дырка. Акцепторные примеси, захватывая электроны и создавая тем самым подвижные дырки, не увеличивают при этом числа электронов проводимости. Основные носители заряда в полупроводнике с акцепторной примесью — дырки, а неосновные — электроны.

Полупроводники, у которых концентрация дырок превышает концентрацию электронов проводимости, называютсяполупроводниками р-типа.

Величина называется потенциалом выхода электрона из металла.

Работой выхода электрона из металла называется минимальная энергия, которую надо сообщить электрону в металле, чтобы он преодолел поле двойного электрического слоя и вылетел за пределы металла:
.

Работу, которую нужно совершить для удаления электрона из металла в вакуум называют работой выхода. Она равна , где е -заряд электрона, – потенциал выхода. Работа выхода производится электронами – за счет уменьшения их кинетической энергии. Поэтому понятно, что медленно движущиеся электроны вырваться из металла не могут.

Термоэлектро́нная эми́ссия (эффект Ричардсона, эффект Эдисона) — явление испускания электронов нагретыми телами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет, и явление термоэлектронной эмиссии становится заметным.

Зависимость термоэлектронного тока от анодного напряжения в области малых положительных значений описывается законом трех вторых (установлен русским физиком С. А. Богуславским (1883— 1923) и американским физиком И. Ленгмюром (1881 — 1957)): , где В — коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.

При увеличении анодного напряжения ток возрастает до некоторого максимального значения, называемого током насыщения. Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряженности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода. Плотность тока насыщения определяется формулой Ричардсона — Дешмана, выведенной теоретически на основе квантовой статистики: , где А — работа выхода электронов из катода, Т — термодинамическая температура, С — постоянная, теоретически одинаковая для всех металлов (это не подтверждается экспериментом, что, по-видимому, объясняется поверхностными эффектами). Уменьшение работы выхода приводит к резкому увеличению плотности тока насыщения. Поэтому применяются оксидные катоды (например, никель, покрытый оксидом щелочноземельного металла), работа выхода которых равна 1 −1,5 эВ.

Эффект Пельтье — термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида контактирующих веществ, направления и силы протекающего электрического тока:

Читайте также:  Карнизы для зонирования комнаты шторами

Q — количество выделенного или поглощённого тепла;

t — время протекания тока;

П — коэффициент Пельтье, который связан с коэффициентом термо-ЭДС α вторым соотношением Томсона [1] П = αT, где Т — абсолютная температура в K.

Причина возникновения явления Пельтье заключается в следующем. На контакте двух веществ имеется контактная разность потенциалов, которая создаёт внутреннее контактное поле. Если через контакт протекает электрический ток, то это поле будет либо способствовать прохождению тока, либо препятствовать. Если ток идёт против контактного поля, то внешний источник должен затратить дополнительную энергию, которая выделяется в контакте, что приведёт к его нагреву. Если же ток идёт по направлению контактного поля, то он может поддерживаться этим полем, которое и совершает работу по перемещению зарядов. Необходимая для этого энергия отбирается у вещества, что приводит к охлаждению его в месте контакта.

p-n-Перехо́д (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-Переход является основой для полупроводниковых диодов, триодов и других электронных элементов с нелинейной вольт-амперной характеристикой.

Дио́д — двухэлектродный электронный прибор, обладающий различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключаемый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключаемый к отрицательному полюсу — катодом.

Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны),полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.

Диоды
Полупроводниковые Не полупроводниковые
Газозаполненные Вакуумные

Вернуться на главную страницу. или ЗАКАЗАТЬ РАБОТУ

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Ответ

ЭЛЕКТРИЧЕСКИЙ ТОК В ПОЛУПРОВОДНИКАХ

– вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры., а это значит, что электрическая проводимость (1/R ) увеличивается.
– наблюдается у кремния, германия, селена и у некоторых соединений.

Механизм проводимости у полупроводников

Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями.
При низких температурах у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик.

Полупроводники чистые (без примесей)

Если полупроводник чистый( без примесей), то он обладает собственнойпроводимостью? которая невелика.

Собственная проводимость бывает двух видов:

1) электронная ( проводимость "n " – типа)

При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны – сопротивление уменьшается.
Свободные электроны перемещаются противоположно вектору напряженности эл.поля.
Электронная проводимость полупроводников обусловлена наличием свободных электронов.

2) дырочная ( проводимость " p" – типа )

При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном – "дырка".
Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда.

Перемещение дырки происходит в направлении вектора напряженности электрического поля.

Кроме нагревания , разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны освещением ( фотопроводимость ) и действием сильных электрических полей.

2.2.1. Собственная электропроводность

Твердые тела, к которым относятся проводники, полупроводники и диэлектрики обычно имеют кристаллическую структуру. Основу кристаллического тела составляют правильные пространственные решетки с конфигурацией, специфической для каждого данного вещества.

В зависимости от того, какие частицы располагаются в узлах, различают следующие кристаллические решетки:

Ионные кристаллические решетки образуются противоположными по знаку ионами, поочередно расположенными в узлах решетки (пример: поваренная соль).

В узлах металлической решетки размещаются лишь положительные ионы металла. Свободные электроны, имеющиеся в таких кристаллах, взаимодействуя с ионами, обеспечивают устойчивость таких решеток (пример: атомы элементов первых групп периодической системы Менделеева).

В молекулярных решетках в узлах располагаются молекулы, связанные друг с другом относительно слабыми силами (пример: лед).

В атомарных кристаллических решетках в узлах располагаются атомы, между которыми непрерывно перемещаются валентные электроны, образующие так называемые ковалентные или парно-электронные связи.

В настоящее время для изготовления полупроводниковых приборов наиболее широко используется кремний Si (элемент четвертой группы периодической системы Менделеева), имеющий валентность, равную четырем. Внешние оболочки атомов кремния имеют четыре валентных электрона.

Применяются и более сложные вещества, такие как карбид кремния SiC, антимонид галлия GaSb, арсенид галлия GaAs, фосфид галлия GaP, антимонид индия InSb, арсенид индия InAs, фосфид индия InP, тройное соединение CdSiAs2.

В основе кристаллической решетки кремния лежит пространственная фигура – тетраэдр. Такие кристаллические решетки называются решетками типа «алмаз». Характерная особенность тетраэдрической системы – одинаковые расстояния центрального атома от четырех угловых. Напомним, что тетраэдр – правильный многогранник, имеющий четыре треугольные грани.

Читайте также:  Как убрать мерцание светодиодов

Атомы решетки связаны друг с другом внешними (валентными) электронами, которые взаимодействуют не только с ядром своего атома, но и с ядрами соседних атомов.

В кристаллах кремния связь между двумя соседними атомами осуществляется двумя валентными электронами – по одному от каждого атома, что наглядно представлено на плоскостной схеме кристаллической решетки (рис. 2.2).

При температуре абсолютного нуля (– 273,16 °С) в кристалле чистого кремния свободных электронов нет, т.е. полупроводник обладает свойствами диэлектрика. При температуре выше абсолютного нуля (или при нагревании, освещении, облучении и т.д.) прочность кристаллической решетки нарушается и появляются электроны проводимости. Эти электроны порывают парно- электронные связи и становятся свободными (количество свободных электронов мало – в кремнии при нормальных условиях их число равно 1·10 -10 %).

Рис. 2.2. Плоскостная схема кристаллической решетки кремния

Таким образом полупроводники, как и металлы, обладают электронной проводимостью. Но полупроводники, в отличие от проводников, обладают и дырочной проводимостью. В тех местах кристаллической решетки, которые покинули электроны, образуются дырки, представляющие собой атомы с положительными зарядами, численно равными зарядам электронов. Такой атом можно условно назвать положительным ионом. Однако следует иметь в виду, что при ионной электропроводности, например в электролитах, ток представляет собой движение ионов («ион-путешественник»), а при дырочной электропроводности ионы кристаллической решетки не передвигаются, а остаются на месте.

Отсутствие электрона в атоме полупроводника условно назвали дыркой. Это подчеркивает, что в атоме не хватает одного электрона, т.е. образовалось свободное место. Дырки ведут себя как элементарные положительно заряженные частицы.

При выходе электронов из кристаллической решетки полупроводника образуются два вида носителей электрических зарядов – электроны (носители отрицательного электричества) и дырки (носители положительного электричества), т.е. происходит процесс генерации пар носителей заряда.

Вследствие того, что электроны и дырки проводимости совершают хаотическое движение, также происходит процесс, обратный генерации – рекомбинация пар носителей заряда, и электроны проводимости вновь занимают свободные места в валентной зоне.

При наличии электрического поля хаотическое перемещение носителей зарядов упорядочивается: электроны начинают перемещаться в направлении положительного полюса, создавая электрический ток, дырки перемещаются в направлении, противоположном движению электронов, т. е. дырки «дрейфуют».

Более правильно электропроводность полупроводника объясняется его энергетической структурой. Как известно, ширина запрещенной зоны ΔW у полупроводников сравнительно невелика (для германия ΔW = 0,72 эВ, для кремния ΔW = 1,12 эВ). При температуре абсолютного нуля (–273,16 °С) полупроводник, не содержащий примесей, является диэлектриком – в нем нет электронов и дырок. При повышении температуры электропроводность полупроводника возрастает, так как электроны валентной зоны получают при нагреве дополнительную энергию и переходят в зону проводимости. Каждый электрон, перешедший в зону проводимости, оставляет в валентной зоне свободное место – дырку. Число электронов равно числу дырок.

Дырка – понятие условное. В действительности в полупроводниках электрический ток создается движением электронов, но как бы двух сортов: свободных и частью валентных электронов.

В идеально чистом кристалле кремния или германия при разрыве электронных связей возникают одновременно электрон и дырка. Одновременно с их образованием происходит и их рекомбинация.

Проводимость, при которой нет избыточных положительных или отрицательных зарядов, называют собственной проводимостью. Собственная проводимость полупроводника невелика и не может обеспечить большого тока. Полупроводник без примесей называют собственным полупроводником или полупроводником i-типа (от английского слова «intrinsic» – природный, собственный).

2.2.2. Примесная проводимость

Проводимость полупроводников резко увеличивается при добавлении определенных количеств специальных примесей, т.е. при легировании.

Химические элементы пятой группы периодической системы Менделеева на внешней оболочке имеют пять валентных электронов (например, сурьма Sb, мышьяк As, фосфор P).

Предположим, что в кремний внесена пятивалентная сурьма. Атомы сурьмы взаимодействуют с атомами кремния четырьмя своими электронами, пятый электрон они отдают в зону проводимости (рис. 2.3).

Примеси, атомы которых отдают электроны, называют донорами («донор» – дающий, жертвующий). Атомы доноров, теряя электроны, сами заряжаются положительно. Полупроводник с преобладанием электропроводности, называют электронным полупроводником или полупроводником n-типа (от первой буквы слова «negative» – отрицательный).

Рис. 2.3. Возникновение примесной электронной электропроводности

На зонной диаграмме полупроводника n-типа (рис. 2.4) энергетические уровни атомов донора лишь немного ниже зоны проводимости основного полупроводника, поэтому из каждого атома донора электрон легко переходит в зону проводимости. Таким образом, дополнительное число электронов равно числу атомов донора. В самих атомах донора при этом дырки не образуются. Отметим при этом, что для чистого кремния ширина запрещенной зоны ΔW = 1,12 эВ, при добавлении сурьмы ширина запрещенной зоны снижается до значения 0,01 эВ.

Читайте также:  Как сшить лоскутную наволочку

Рис. 2.4. Зонная диаграмма полупроводника n-типа

Химические элементы третьей группы периодической системы Менделеева на внешней оболочке содержат три валентных электрона (например, индий In, бор B, алюминий Al, галлий Ga). Предположим, что в кремний внесен трехвалентный индий. Атомы примесей индия отбирают электроны у атомов кремния, и в последних образуются дырки (рис. 2.5).

Вещества, отбирающие электроны и создающие примесную дырочную электропроводность, называют акцепторами («акцептор» – принимающий). Атомы акцептора, захватывая электроны, сами заряжаются отрицательно.

Рис. 2.5. Возникновение примесной дырочной электропроводности

При добавлении индия ширина запрещенной зоны также снижается до значения 0,01 эВ.

Полупроводники с преобладанием дырочной электропроводности, называют дырочными полупроводниками или полупроводниками p-типа (от первой буквы слова «positive» – положительный).

Рис. 2.6. Зонная диаграмма полупроводника p-типа

Энергетические уровни атомов акцептора располагаются лишь немного выше валентной зоны. На эти уровни легко переходят электроны из валентной зоны, в которой возникают дырки.

Концентрация примесей обычно ничтожно мала. Один атом примеси приходится приблизительно на 10 млн атомов полупроводника, вследствие чего общая структура его кристаллической решетки в основном сохраняется неизменной. Однако прибавление к чистому полупроводнику даже такого незначительного количества донорной или акцепторной примеси может повысить его проводимость в сотни тысяч – миллион раз.

Чтобы примесная электропроводность преобладала над собственной, концентрация атомов донорной Nд или акцепторной Nа примеси должна превышать концентрацию собственных носителей заряда (ni = pi). Практически при изготовлении примесных полупроводников значения Nд или Nа всегда во много раз больше, чем ni или pi. Например, для германия, у которого при комнатной температуре ni = pi = 10 13 см -3 , Nд и Nа могут быть равными 10 15 -10 18 см -3 каждая, то есть в 10 2 -10 5 раз больше концентрации собственных носителей.

Носители заряда, концентрация которых в данном полупроводнике преобладает, называются основными (в полупроводнике n-типа – электроны, в полупроводнике p-типа – дырки). Неосновными являются носители заряда, концентрация которых меньше, чем концентрация основных носителей (в полупроводнике n-типа – дырки, в полупроводнике p-типа – электроны).

В примесном полупроводнике концентрация неосновных носителей уменьшается во столько раз, во сколько увеличивается концентрация основных носителей.

Рассмотрим прохождение тока через полупроводник с разным типом электропроводности, причем для упрощения будем пренебрегать током неосновных носителей.

На рис. 2.7 дырки изображены светлыми, а электроны – темными кружками. Знаки «+» или «–» обозначают соответственно заряженные атомы кристаллической решетки.

В полупроводнике n-типа под действием ЭДС источника в проводах, соединяющих полупроводник с источником, и в самом полупроводнике движутся электроны проводимости. В полупроводнике p-типа, в соединительных проводах по-прежнему движутся электроны, а в самом полупроводнике ток следует рассматривать как движение дырок. Электроны с отрицательного полюса поступают в полупроводник и заполняют пришедшие сюда дырки. К положительному полюсу приходят электроны из соседних частей полупроводника, и в этих частях образуются дырки, которые перемещаются от левого края к правому.

Рис. 2.7. Ток в полупроводниках с электронной (а) и дырочной (б)

В электротехнике принято условное (в направлении действующей ЭДС) направление тока от “плюса” к “минусу”. Истинное направление движения электронов изображено на рис. 2.7.

Помимо тока проводимости в полупроводниках (дрейфа носителей) может быть еще диффузионный ток, причиной которого является разная концентрация носителей.

Если носители заряда распределены равномерно по полупроводнику, то их концентрация называется равновесной. Под влиянием внешних воздействий в разных частях полупроводника концентрация может стать неравновесной.

Носители заряда имеют собственную кинетическую энергию, они переходят из мест с большей концентрацией в места с меньшей концентрацией, то есть стремятся распределиться равномерно. Вследствие этого возникает ток диффузии Jдиф. Этот ток, также как ток проводимости, может быть электронным или дырочным. Плотности этих токов определяются следующими формулами

; (2.1)

, (2.2)

где q – заряд электрона;

Dn, Dp – коэффициенты диффузии;

, – градиенты концентрации электронов и дырок.

Градиент концентрации характеризует, каково изменение концентрации электронов или дырок на единицу длины. Если разности концентрации нет, то Δn= 0 и Δp= 0 и ток диффузии не возникает. Чем больше изменение концентрации Δnили Δpна данном расстоянии Δх, тем больше ток диффузии.

Коэффициент диффузии характеризует интенсивность процесса диффузии. Он пропорционален подвижности носителей, различен для разных веществ и зависит от температуры. Единица измерения его – квадратный сантиметр в секунду. Коэффициент диффузии для электронов всегда больше, чем для дырок. Например, при комнатной температуре для германия Dn = 98 и Dp1= 47 см 2 /с, а для кремния – Dn = 34 и Dp = 12 см 2 /с. Знак «минус» в формуле плотности дырочного диффузионного тока поставлен потому, что дырочный ток направлен в сторону уменьшения концентрации дырок.

Комментарии запрещены.

Присоединяйся