Каково значение магнитной проницаемости для ферромагнетиков

Многочисленные опыты свидетельствуют о том, что все вещества, помещенные в магнитное поле, намагничиваются и создают собственное магнитное поле, действие которого складывается с действием внешнего магнитного поля:

где $oldsymbol<vec>$ — магнитная индукция поля в веществе; $oldsymbol<<vec>_<0>>$ — магнитная индукция поля в вакууме, $oldsymbol<<vec>_<1>>$ — магнитная индукция поля, возникшего благодаря намагничиванию вещества. При этом вещество может либо усиливать, либо ослаблять магнитное поле. Влияние вещества на внешнее магнитное поле характеризуется величиной μ, которая называется магнитной проницаемостью вещества

$$ oldsymbol<mu =frac<_<0>>>$$

  • Магнитная проницаемость — это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

Все вещества состоят из молекул, молекулы – из атомов. Электронные оболочки атомов можно условно рассматривать состоящими из круговых электрических токов, образованных движущимися электронами. Круговые электрические токи в атомах должны создавать собственные магнитные поля. На электрические токи должно оказывать действие внешнее магнитное поле, в результате чего можно ожидать либо усиления магнитного поля при сонаправленности атомных магнитных полей с внешним магнитным полем, либо их ослабления при их противоположной направленности.
Гипотеза о существовании магнитных полей в атомах и возможности изменения магнитного поля в веществе полностью соответствует действительности. Все вещества по действию на них внешнего магнитного поля можно разделить на три основные группы: диамагнетики, парамагнетики и ферромагнетики.

Диамагнетиками называются вещества, в которых внешнее магнитное поле ослабляется. Это значит, что магнитные поля атомов таких веществ во внешнем магнитном поле направлены противоположно внешнему магнитному полю (µ Рис. 2

2) собственным вращением (спином) электронов (спиновой магнитный момент) (рис. 2).

Для любознательных. Магнитный момент контура равен произведению силы тока в контуре на площадь, охватываемую контуром. Его направление совпадает с направлением вектора индукции магнитного поля в середине контура с током.

Так как в атоме плоскости орбит различных электронов не совпадают, то вектора индукций магнитных полей [1], созданные ими (орбитальные и спиновые магнитные моменты), направлены под разными углами друг к другу. Результирующий вектор индукции многоэлектронного атома равен векторной сумме векторов индукций полей, создаваемых отдельными электронами. Не скомпенсированными полями обладают атомы с частично заполненными электронными оболочками. В атомах с заполненными электронными оболочками результирующий вектор индукции равен 0.

Во всех случаях изменение магнитного поля обусловлено появлением токов намагниченности (наблюдается явление электромагнитной индукции). Иными словами принцип суперпозиции для магнитного поля остается справедливым: поле внутри магнетика является суперпозицией внешнего поля $oldsymbol<<vec>_<0>>$ и поля $oldsymbol<vec, которые возникают под действием внешнего поля. Если поле токов намагниченности направлено так же, как и внешнее поле, то индукция суммарного поля будет больше внешнего поля (Рис. 3, а) – в этом случае мы говорим, что вещество усиливает поле; если же поле токов намагниченности направлено противоположно внешнему полю, то суммарное поле будет меньше внешнего поля (Рис. 3, б) – именно в этом смысле мы говорим, что вещество ослабляет магнитное поле.

Подробнее механизм намагничивания диамагнетиков описан здесь: Слободянюк А.И. Физика 10. §13.3 Типы магнетиков.

Вещества, в которых внешнее магнитное поле усиливается в результате сложения с магнитными полями электронных оболочек атомов вещества из-за ориентации атомных магнитных полей в направлении внешнего магнитного поля, называются парамагнетиками (µ > 1).

Парамагнетики очень слабо усиливают внешнее магнитное поле. Магнитная проницаемость парамагнетиков отличается от единицы лишь на доли процента. Например, магнитная проницаемость платины равна 1,00036. Из – за очень малых значений магнитной проницаемости парамагнетиков и диамагнетиков их влияние на внешнее поле или воздействие внешнего поля на парамагнитные или диамагнитные тела очень трудно обнаружить. Поэтому в обычной повседневной практике, в технике парамагнитные и диамагнитные вещества рассматриваются как немагнитные, то есть вещества, не изменяющие магнитное поле и не испытывающие действия со стороны магнитного поля. Примерами парамагнетиков являются натрий, кислород, алюминий (μ = 1,00023).

Читайте также:  Какая толщина несущей стены в панельном доме

В парамагнетиках молекулы обладают собственным магнитным полем. В отсутствии внешнего магнитного поля из-за теплового движения вектора индукций магнитных полей атомов и молекул ориентированы хаотически, поэтому их средняя намагниченность равна нулю (рис. 4, а). При наложении внешнего магнитного поля на атомы и молекулы начинает действовать момент сил, стремящийся повернуть их так, чтобы их поля были ориентированы параллельно внешнему полю. Ориентация молекул парамагнетика приводит к тому, что вещество намагничивается (рис. 4, б).

Полной ориентации молекул в магнитном поле препятствует их тепловое движение, поэтому магнитная проницаемость парамагнетиков зависит от температуры. Очевидно, что с ростом температуры магнитная проницаемость парамагнетиков уменьшается.

Ферромагнетики

Вещества, значительно усиливающие внешнее магнитное поле, называются ферромагнетиками (никель, железо, кобальт и др.). Примерами ферромагнетиков являются кобальт, никель, железо (μ достигает значения 8·10 3 ).

Само название этого класса магнитных материалов происходит от латинского имени железа — Ferrum. Главная особенность этих веществ заключается в способности сохранять намагниченность в отсутствии внешнего магнитного поля, все постоянные магниты относятся к классу ферромагнетикам. Кроме железа ферромагнитными свойствами обладают его «соседи» по таблице Менделеева — кобальт и никель. Ферромагнетики находят широкое практическое применение в науке и технике, поэтому разработано значительное число сплавов, обладающих различными ферромагнитными свойствами.

Все приведенные примеры ферромагнетиков относятся к металлам переходной группы, электронная оболочка которых содержит несколько не спаренных электронов, что и приводит к тому, что эти атомы обладают значительным собственным магнитным полем. В кристаллическом состоянии благодаря взаимодействию между атомами в кристаллах возникают области самопроизвольной (спонтанной) намагниченности — домены. Размеры этих доменов составляют десятые и сотые доли миллиметра (10 -4 − 10 -5 м), что значительно превышает размеры отдельного атома (10 -9 м ). В пределах одного домена магнитные поля атомов ориентированы строго параллельно, ориентация магнитных полей других доменов при отсутствии внешнего магнитного поля меняется произвольно (рис. 5).

Таким образом, и в не намагниченном состоянии внутри ферромагнетика существуют сильные магнитные поля, ориентация которых при переходе от одного домена к другому меняется случайным хаотическим образом. Если размеры тела значительно превышают размеры отдельных доменов, то среднее магнитное поле, создаваемое доменами этого тела, практически отсутствует.

Если поместить ферромагнетик во внешнее магнитное поле B, то магнитные моменты доменов начинают перестраиваться. Однако механического пространственного вращения участков вещества не происходит. Процесс перемагничивания связан с изменением движения электронов, но не с изменением положения атомов в узлах кристаллической решетки. Домены, имеющие наиболее выгодную ориентацию относительно направления поля, увеличивают свои размеры за счет соседних «неправильно ориентированных» доменов, поглощая их. При этом поле в веществе возрастает весьма существенно.

Свойства ферромагнетиков

1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии;

2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри. Так для чистого железа значение температуры Кюри приблизительно равно 900°C;

3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рисунке 6 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B:

4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 7).

Это объясняется тем, что вначале с увеличением B магнитная индукция B растет сильнее, а, следовательно, μ будет увеличиваться. Затем при значении магнитной индукции B’ наступает насыщение (μ в этот момент максимальна) и при дальнейшем увеличении B магнитная индукция B1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):

5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А) (рис. 8), а затем уменьшать ток в соленоиде, а вместе с ним и B, то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B = 0 (ток в соленоиде выключен), индукция будет равна Br (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, т.е. приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до Boc, размагничивают стержень (B = 0).

  • Модуль Boc индукции магнитного поля, размагничивающего намагниченный ферромагнетик, называют коэрцитивной силой.

При дальнейшем увеличении B можно намагнитить стержень до насыщения (точка А’).

Читайте также:  Как садить семена суккулентов

Уменьшая теперь B до нуля, получают опять постоянный магнит, но с индукцией Br (противоположного направления). Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция B станет равной Boc. Продолжая увеличивать я B, снова намагничивают стержень до насыщения (точка А).

Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B0. Это отставание называется явлением гистерезиса. Изображенная на рисунке 8 кривая называется петлей гистерезиса.

Гистерезис (греч. ὑστέρησις — «отстающий») — свойство систем, которые не сразу следуют за приложенными силам.

Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности и коэрцитивной силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения коэрцитивной силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах — реле, трансформаторах, магнитопроводах и др.

Все вещества в магнитном поле намагничиваются (в них возникает внутреннее магнитное поле). В зависимости от величины и направления внутреннего поля вещества разделяют на:

Намагниченность вещества характеризуется магнитной проницаемостью ,

. (1)

– магнитная индукция в веществе,

– магнитная индукция в вакууме.

Любой атом можно характеризовать магнитным моментом .

– сила тока в контуре, – площадь контура, – вектор нормали к поверхности контура.

Микроток атома создается движением отрицательных электронов по орбите и вокруг собственной оси, а также вращением положительного ядра вокруг собственной оси.

Когда нет внешнего поля , в атомах диамагнетиковтоки электронов и ядра скомпенсированы. Суммарный микроток атома и его магнитный момент равны нулю.

Во внешнем магнитном поле в атомах индуцируются (наводятся) ненулевые элементарные токи. Магнитные моменты атомов при этом ориентируются противоположно .

Создается небольшое собственное поле , направленное противоположно внешнему , и ослабляющего его.

В диамагнетиках .

Т.к.

Домены, включающие миллиарды атомов, обладают инерционностью и не возвращаются быстро в первоначальное беспорядочное состояние. Поэтому, если ферромагнетик удалить из внешнего поля, то его собственное поле сохраняется длительное время.

Магнит размагничивается при длительном хранении (с течением времени домены возвращаются в хаотичное состояние).

Другой способ размагничивания – нагревание. Для каждого ферромагнетика существует температура (она называется «точка Кюри»), при которой в доменах разрушаются связи между атомами. В этом случае ферромагнетик превращается в парамагнетик и происходит его размагничивание. Например, точка Кюри для железа составляет 770°С.

Разрушение доменной структуры ферромагнетика возможно в результате сильного удара.

Также размагнитить ферромагнетик можно, поместив его во внешнее поле, направленное противоположно полю ферромагнетика.

Таблица 2. Магнитная проницаемость ферромагнетиков

Железо 5000-10000 Пермаллой 1 30 000-50 000
Кобальт 80-100 Чугун 600-800
Никель 40-50

1 Пермаллой – сплав из 68% никеля и 32% железа; применяется для изготовления сердечников трансформаторов.

Для ферромагнетиков наблюдается явление гистерезиса («запаздывания»). Проявляется в том, что кривая намагничивания не совпадает с кривой размагничивания.

(0-1)– начальное намагничивание до насыщения,

(1-2) – процесс размагничивания.

– остаточная намагниченность,

– коэрцитивная сила (индукция намагничивающего поля , при которой происходит полное размагничивание образца, =0),

Дата добавления: 2015-06-01 ; просмотров: 2841 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Читайте также:  Как устроен оптический кабель

Магнитная проницаемость ферромагнетиков зависит от многих факторов, что может быть положено в основу разработки разнообразных типов датчиков, предназначенных для измерения электрических и неэлектрических величин.

Зависимость магнитной проницаемости ферромагнитных материалов от напряженности магнитного поля.

Рис. 5.18 Зависимость магнитной проницаемости ферромагнетика от напряженности магнитного поля.

Магнитная проницаемость ферромагнетика зависит от напряженности магнитного поля и характеризуется наличием критической намагниченности, при которой магнитная проницаемость материала достигает максимального значения.

Зависимость магнитной проницаемости ферромагнитных материалов от частоты изменения напряженности магнитного поля.

Рис. 5.19 Зависимость магнитной проницаемости ферромагнетика от частоты магнитного поля.

Ферромагнитные материалы характеризуются наличием частоты среза, в окрестностях которой происходит резкое изменение магнитных свойств ферромагнетика.

Зависимость магнитной проницаемости ферромагнитных материалов от температуры.

Рис. 5.20 Зависимость магнитной проницаемости ферромагнетика от температуры..

Магнитная проницаемость ферромагнитных материала при нагревании возрастает, но при достижении критической температуры (точки Кюри) происходит разрушение упорядоченности в структуре материала и он переходит в парамагнитное состояние.

Зависимость магнитной проницаемости ферромагнитных материалов от механической напряженности в материале.

Рис. 5.21 Зависимость магнитной проницаемости ферромагнетика от механического напряжения при различных напряженностях магнитного поля.

Приведенные графики отражают наличие магнитоупругого эффекта в ферромагнетиках.

Зависимость относительных деформаций ферромагнитных материалов от величины напряженности магнитного поля.

Рис. 5.22 Кривые, характеризующие явление магнитострикции в материалах.

Данные зависимости отражают наличие магнитострикционного эффекта в ферромагнетиках.

Деформация петли гистерезиса под действием механических напряжений в ферромагнитных материалах.

Рис. 5.23 Зависимость формы петли гистерезиса ферромагнетика от величины и направления механических напряжений в материале.

Как следует из приведенных графиков, остаточная индукция является функцией механических напряжений в материале. Под действием сжимающих усилий в ферромагнетике происходит стабилизация структуры, что сопровождается уменьшением потерь на гистерезис.

Магнитотвердые материалы характеризуются большим значением остаточной коэрцитивной силы. Основные характеристики для таких материалов: легкость намагничивания; малые магнитные потери на перемагничивание. К их числу относятся сплавы: АЛНИКО; АРМКО; ВИКАЛЛОЙ.

Магнитомягкими материалами являются пермаллои, стали. Существуют так же магнитные жидкости.

Ферромагнитные материалы используют для записи и хранения информации (с 1947 г.). Для этих целей на поверхности подложки наносят специальное ферролаковое покрытие. Ток записи намагничивает определенные области покрытия. Считывание записанной информации осуществляется, например, путем генерации ЭДС в катушке индуктивности.

К преимуществам таких запоминающих устройств можно отнести следующие факторы: это компактный, надежный носитель информации, потребляющий мало энергии; может сохранять информацию без дополнительных источников энергии; информация легко считывается; возможно многократное использование носителя информации.

Используют различные способы записи информации на магнитные носители, например, без возврата к нулю, с возвратом к нулю, запись информации по двум и трем уровням (намагничено, размагниченно, с насыщением), фазовая модуляция и т.п.

Есть статические и динамические запоминающие устройства на магнитных носителях, на пленках с управлением движения доменов (используется акустическая система), магнитоакустическое запоминающее устройства, а также на основе использования эффекта Фарадея (поворот вектора поляризации света в магнитном поле).

Контрольные вопросы к главе 5

Объясните принцип работы магнитоиндукционного расходомера.

Дайте сравнительную характеристику индуктивных и дифференциально-трансформаторных первичных преобразователей.

Объясните механизм чувствительности вихретоковых измерительных преобразователей.

От каких причин зависит глубина проникновения электромагнитных волн в вещество?

Объясните физическую природу диамагнетизма и ферромагнетизма.

Приведите примеры практического использования ферримагнетиков и антиферромагнетиков в измерительной технике.

Опишите принцип работы устройства для измерения перемещений, основанного на использовании эффекта Видемана.

Приведите примеры практического использования эффекта Баркгаузена.

В чем особенность принципа работы магнитоупругого первичного измерительного преобразователя?

Предложите конструкцию дифференциального магнитоупругого анизотропного первичного преобразователя.

Объясните причину нелинейной зависимости магнитной проницаемости ферромагнетных материалов от различных влияющих факторов: температуры, напряженности магнитного поля, механических напряжений и т.п.

Каким образов изменяется вид петли гистерезиса ферромагнетика при воздействии на него растягивающих и сжимающих усилий.?

Комментарии запрещены.

Присоединяйся