Калькулятор фильтра для акустической системы

Динамики в акустических системах должны быть подключены таким образом, чтобы на каждый из них поступало напряжение только тех частот, которые он должен воспроизводить. Это достигается тем, что в звуковой тракт включается электрический фильтр, который обеспечивает подавление сигнала нежелательных частот. Применение фильтра в АС обусловлено необходимостью выполнения 2-х основных задач:

  • ограничение полосы воспроизводимых частот, для устранения избыточного звукового давления;
  • ограничение полосы частот, которая способна вызвать повреждение динамика (например, проникновение НЧ сигнала на ВЧ динамик);

Фильтры бывают пассивные и активные. Пассивные фильтры включаются между усилителем и акустической системой и монтируются внутри последней. Пассивные фильтры имеют фиксированные характеристики и не имеют возможностей регулировки параметров в процессе эксплуатации системы.

Активные фильтры (активные кроссоверы) включаются между источником сигнала и усилителем. К достоинствам активных фильтров можно отнести более гибкие возможности регулировки параметров. Среди недостатков – необходимость использования отдельного канала усиления для каждой отфильтрованной полосы частот.

В реальных звуковых комплексах часто комбинируют эти два типа фильтров.

Расчёт пассивного фильтра

Фильтр АС представляет собой совокупность электрических цепей предназначенных для ограничения определённых частот, поступающих на динамики.

Фильтры встречаются следующих типов (см. рис.1):

  • Фильтр высоких частот (ФВЧ) – ограничивает частотный диапазон динамика снизу;
  • Фильтр низких частот (ФНЧ) – ограничивает частотный диапазон динамика сверху;
  • Полосовой фильтр (ПФ) – ограничивает частотный диапазон динамика сверху и снизу;
  • Комбинированный тип – представляет собой сочетание вышеуказанных типов.

Фильтр характеризуется частотой раздела и величиной порядка (1-го порядка, 2-го порядка и т.д.) Порядок фильтра определяет крутизну спада АЧХ в полосе заграждения, и определяется количеством реактивных элементов в электронной схеме. Каждый реактивный элемент, добавленный в схему, увеличивает порядок фильтра на единицу и, соответственно, крутизну спада характеристики на 6дБ/окт. Реактивные элементы фильтра представляют собой индуктивности (катушки) и емкости (конденсаторы), соединённые по определённой схеме. Номиналы реактивных элементов определяют частоту среза фильтра.

Для подавления избыточной чувствительности динамика в схему добавляется аттенюатор (делитель напряжения). Данная мера применяется для приведения чувствительностей динамиков в АС к единому уровню. Чувствительность НЧ динамика обычно может составлять 95-100дБ, в то время как типовое значение чувствительности ВЧ динамика может достигать 110дБ. Очевидно, что необходимо понизить чувствительность ВЧ динамика до уровня чувствительности НЧ. Если номинальные сопротивления НЧ и ВЧ динамиков равны, то необходимое подавление будет равно разности чувствительностей ВЧ и НЧ динамиков. Расчёт несколько осложняется, если номинальные сопротивления динамиков не равны, т.к. в этом случае следует пересчитать чувствительность ВЧ динамика для номинального сопротивления, равного номинальному сопротивлению НЧ. Принцип пересчёта будет рассмотрен ниже.

Расчёт фильтра для 2-х полосной акустической системы

Обратим внимание, что расчёты способны дать приближённый результат, который можно использовать в качестве исходного варианта для изготовления макета фильтра. Как правило, изготовленный на основании расчётов фильтр, требует доработки на реальной АС, которая заключается в более оптимальном подборе электрических компонентов. Окончательная оценка фильтра формируется на основании измерений АЧХ и в результате прослушивания АС на разных фонограммах.

Рассмотрим распространённый вариант фильтра, реализованный во многих 2-х полосных полнодиапазонных АС.

Электрическая схема акустической системы с таким фильтром представлена на рис.2.

Особенностью схемы является то, что НЧ динамик в такой АС работает «в широкую полосу», а диапазон воспроизведения ВЧ динамика ограничен со стороны низких частот с помощью ФВЧ 3-го порядка, что обеспечивает спад характеристики в полосе заграждения 18 дБ/окт. Резисторы R1 и R2 представляют собой делитель напряжения, обеспечивающий подавление избыточной чувствительности ВЧ динамика. Номинал R2 выбирается равным или в 2 – 3 раза больше номинального сопротивления ВЧ динамика (Zвч). Данная схема проста в реализации, имеет малый вес и габариты, низкую стоимость компонентов. Необходимо отметить, что данная схема может быть реализована, только при условии, что неравномерность АЧХ НЧ динамика не превышает допустимого значения во всём его рабочем диапазоне.

Обычно конструирование фильтра начинается с анализа АЧХ динамиков и выбора оптимальной частоты раздела. Расчёт фильтра сводится к определению номиналов элементов электрической схемы фильтра.

Расчёт фильтра включает следующие этапы:

1.Определение величины подавления избыточной чувствительности ВЧ (ослабление):

2.Расчёт номиналов элементов делителя:

3.Расчёт номиналов реактивных элементов:

4.Расчёт мощности, рассеиваемой на элементах:

Мощность используемых резисторов может быть меньше рассчитанных значений в 2-3 раза, т.к. паспортная мощность резисторов указывается для синусоидального сигнала.

Читайте также:  Камера с функцией слежения

Для удобства расчёта фильтров по описанному алгоритму на нашем сайте имеется специальный калькулятор. Используя его, вам не составит труда рассчитать фильтр для вашей АС. При расчёте используются исходные данные и выражения, которые рассматривались выше.

Расчёт делителя фильтра 2-х полосной АС (Понижение чувствительности ВЧ звена)

Номинальное сопротивление НЧ звена, Ом

Чувствительность НЧ звена, дБ

Мощность AES НЧ звена, Вт

Номинальное сопротивление ВЧ звена, Ом

Чувствительность ВЧ звена, дБ

Сопротивление R2, Ом

Ослабление фильтра, дБ

Сопротивление R1, Ом

Мощность, рассеиваемая на ВЧ, Вт

Мощность, рассеиваемая на сопротивлении R1, Вт *

Мощность, рассеиваемая на сопротивлении R2, Вт *

* Мощность используемых резисторов может быть меньше рассчитанных значений в 2-3 раза, т.к. паспортная мощность резисторов указывается для синусоидального сигнала.

Расчёт реактивных элементов ФВЧ

Частота среза, Гц

Сопротивление ВЧ головки на постоянном токе, Ом

Для изготовления фильтров применяются конденсаторы, катушки индуктивности, мощные резисторы, печатные платы, клеммные колодки. В ассортименте товаров фирмы Актон всегда имеется необходимый запас компонентов, которые могут потребоваться при изготовлении фильтров для АС.

Добро пожаловать!

На нашем сайте вы можете ознакомиться с нашими услугами и товарами, а также почитать интересную информацию. Если у Вас возникли вопросы, Вы можете связаться с нами:

OOO "Актон"

Производство и продажа динамиков и акустических систем

Наш адрес:

г. Санкт-Петербург, ул.Таллинская, д.7, лит.Е

Как расчитать и изготовить звуковые колонки

главная скачать связь
Hi-Fi колонки из автомобильных динамиков
Узнай типохарактер
своего слуха
FAQ по использованию WinISD
Программы для расчета АС
Основные параметры
НЧ-головок

>

корпуса >> кроссоверы >> динамики >> психоакустика >>

–>

КОРПУСА КОЛОНОК
АКУСТИЧЕСКОЕ ОФОРМЛЕНИЕ Основные параметры НЧ-головок Закрытый ящик АС с фазоинвертором АС с пассивным излучателем Конструктивные особенности корпуса АС
РАЗДЕЛИТЕЛЬНЫЕ ФИЛЬТРЫ
КРОССОВЕР Фильтры постоянного входного сопротивления Фильтры всепропускающего типа Фазировка головок Радио калькуляторы
ПРАКТИЧЕСКИЕ ПРИМЕРЫ
Изготовление Hi-Fi акустических систем на базе автомобильных динамиков Радио калькуляторы Программы для расчета АС Справка по WinISD Размещение колонок в комнате
ИНФО
Особенности восприятия звука человеком Помощь WinISD на русском Динамические головки Требования к помещениям для прослушивания

Бесплатные программы для расчета АС

Speaker Workshop

Программа расчета акустики и сабвуферов
Speaker Workshop позволяет производить расчет корпусов, фильтров; различные измерения: импеданса динамиков, АЧХ, гармоничеких искажений, пассивных компонентов (конденсаторов, катушек индуктивности, резисторов); и многое другое. Имеется описание по работе с программой на русском языке.

JBL Speakershop

Программа для расчета сабвуферов
Фирменная продукция компании JBL.
После разархивирования и инсталляции дает два модуля: для расчета корпусов сабвуферов и для расчета пассивных кроссоверов.

UniBox (Unified Box Model)

Программа для расчета акустических систем различного типа
закрытый ящик (Closed Box)
фазоинвертор (Vented Box)
система с пассивным радиатором (Passive Radiator Box)
банд-пасс (Bandpass Single Tuned Box)
Очень простая и логичная программа, работает в оболочке Microsoft Windows Excel 2000. По отзывам, нормально функционируют и под Excel 97, если он соответсвующим образом обновлен. Позволяет симулировать уровень звукового давления, кривую импеданса динамиков, АЧХ и многое другое.
На сайте производителя можно найти базу по многим известным динамикам:
Кроме этого, Вы можете вручную добавлять характеристики динамиков и создавать новые базы данных

WinSpeakerz

Программа для расчета сабвуферов
WinSpeakerz – правописание как в оригинале – работа некоего Джона Мерфи, компания TrueAudio.
Программа вполне коммерческая, стоит около 130 долларов, а бесплатно выдается демо-версия, без базы данных по динамикам и прочих прелестей (включая руководство на 150 страницах). Программа по-настоящему хороша, поскольку, кроме прочего, имеет специальную функцию для учета внутрисалонной акустики.

Crossover Elements Calculator

Программа для расчетов
упрощенной цепи Цобеля, L-Pad цепей для динамиков, корректирующего звена чувствительности высоких частот, все необходимые параметры катушки индуктивности, встроенная утилита рутинного суммирования элементов "правилом резисторов", рекомендует тип корпуса акустики под динамическую головку.

Расчет Катушек для Динамиков

Программа для расчетов
Программа для расчета звуковой катушки динамика. катушек индуктивности. и.т.д.
Зная внутренний и наружный диаметр катушки, подставив желаемое сопротивление, и количество рядов. Вы получите намоточные данные катушки, и некоторые справочные данные.Диаметр провода выбирают в меньшою сторону от расчетных, пусть лучше будут больше зазоры чем больше шуршания.

NCH Gen

Генератор звуковых частот и сигналов спецформы
NCH Tone Generator – простенькая в обращении программа, генерирующая (при наличии присутствия звуковой карты) сигналы синусоидальной формы (с коэффициентом гармоник около 0,01%).
. прямоугольной (со вполне пристойными фронтами).
. пилообразной, и т.д. Есть и сигнал со спектром белого шума, к нему, правда, есть некоторые претензии. Здесь – шумовой сигнал производства NCH T. Gen (красным) и встроенного генератора SpectraLab (синим). Второй – тоже не идеальный, но лучше.

WinISD Pro Alpha

предназначена для расчета акустических систем фазоинверторного и закрытого типа
Эта программа выгодно отличается от подобных продуктов тем, что ее легко освоить даже с английским интерфейсом.
WinISD имеет собственную обширную базу электродинамических головок со всеми возможными параметрами. Параметрами Тилля Смола и геометрическими размерами. Так же имеется возможность пополнять базу динамиков своими драйверами с помощью эдитора.Имеется упрощенный расчет двухполосных пассивных фильтров I и II порядков. И шести различных вариантов активных фильтров.
Так же есть встроенный генератор звуковых частот, который будет очень полезен при настройке АС
Описание WinISD Pro Alpha на русском языке

WinISD beta

для расчета систем фазоинверторного и закрытого типа
Я лично использовал программу WinISD в качестве дублирующего расчета фазоинвертора акустических систем на базе автомобильных динамиков.
Программа на удивление точно рассчитывает фазоинвертор учитывая даже виртуальное увеличение объема ящика при заполнении его звукопоглощающим материалом.

Power Port

Программа расчета фазоинвертора типа Power Port (патент фирмы Polk Audio)
Эту программу придумал Мэтт Полк и Джордж Клопфер Идея в том, чтобы снизить скорость на выходе тоннеля фазоинвертора и одновременно уменьшить его длину при сохранении настройки.
Программа расчета устроена как файл Excel. Чтобы вся эта штука не открывалась в браузере, она заархивирована в ZIP.

VASCalc

Программа для расчета эквивалентного объема головки.
Программа написана в Microsoft Excel.
Программа для расчета эквивалентного объема головки методом добавочной массы.

Harmon3way

Программа расчета интерференционных искажений АЧХ.
Программа написана в Microsoft Excel. Все просто и понятно.
Программа расчета интерференционных искажений АЧХ работы Г.Татевяна

Blaubox

Программа для расчета сабвуферов
BLAUBOX – творение Блаупункта, как ясно из названия,- программа вполне и безусловно бесплатная. Несколько упрощенная и грубоватая графика вполне компенсируется тем, что программа работает, во-первых, быстро, во-вторых, может рассчитывать все три основных типа сабвуферов (закрытый ящик, фазоинвертор, полосовой сабвуфер), в-третьих – чрезвычайно проста в обращении, в-четвертых – может рисовать рабочие чертежи ящика по результатам расчета. Вот примеры выдаваемых результатов: АЧХ двух одновременно рассчитываемых сабвуферов и эскиз ящика.

Perfect Box 4.5

Программа для расчета сабвуферов
Perfect Box 4.4 – предпродажная версия программы, при этом почти полностью укомплектована функциями и опциями. Внешне – грубоватая ДОС-овская вещь. На деле – лучшая, на мой взгляд программа, если наловчиться. Рассчитывает закрытые ящики и фазоинверторы.

В качестве приданного идет довольно большая база данных по динамикам, легко Вами пополняемая по мере возникновения надобности, а также вещь малополезная, но забавная – программа EQ2.EXE , с помощью которой можно рассчитать звено активной коррекции АЧХ. Программа завязана на основную по параметрам частоты и добротности корректирующего фильтра.

Box Plot 2

Программа для расчета сабвуферов
Boxplot 2 – предпродажная версия программы, в связи с чем часть функций не работает. Главное достоинство – программа очень поучительна, поскольку прямо на экране можно варьировать параметрами H = fb/fs (отношение частоты настройки фазоинвертора к резонансной частоте головки и ALPHA = Vas/Vb (отношение эквивалентного объема головки к объему ящика, в том числе и закрытого). Через пять минут работы с программой человек, никогда в жизни не читавший ничего по теории громкоговорителей уже знает наиболее важные зависимости. Для практических расчетов программа не очень удобна из-за урезанных функций, хотя при некотором навыке работать можно. Впрочем, если кто желает заплатить 25 долларов – там где-то сказано – куда.

Программа расчета пассивных кроссоверов
Программа PXO (Passive X-Overs), как и положено по возрасту, работает под DOS и работает отлично. Вы выбираете частоту (или частоты, для трехполосной системы) раздела, крутизну скатов от 6 до 24 дБ/окт и тип фильтра (Баттерворт, Линквиц-Рили и т.д.), а взамен получаете графики всех основных характеристик и номиналы элементов, входящих в цепи фильтров, причем последние схематически изображены в нижнем окне пользовательского интерфейса.

Примечание:
Когда все будет сделано по Вашему вкусу, естественно возникнет вопрос "Как рассчитать индуктивность?" – готовых-то их нет, в отличие от конденсаторов. Для этого служит еще более простая программа, приведенная ниже – COILS.EXE

Coils (russ)

Программа расчета индуктивности
Здесь все совсем просто: вводите требуемое значение индуктивности (в миллигенри), диаметр провода и диаметр каркаса. Получаете – потребное число витков, длину каркаса, расход провода и его сопротивление, которое Вы можете сравнить с сопротивлением звуковой катушки и принять командирское решение.

Coils

Программа расчета индуктивности
Если у кого проблемы с кириллицей под DOS – с англоязычным инерфейсом.

LC – фильтры я оставил на десерт, подобно бутылке благородного вина, покрытой слоем вековой пыли. Это антиквариат, который на Сотбисе не купишь!

Как ни крути, а не получил бы Александр Степаныч наш Попов звание почётного инженера-электрика, не направь он искровой разряд напрямик в колебательный контур для обретения благословения свыше и резонанса с передающей антенной.
И заскучала бы братва копателей свободной энергии эфира, не изобрети Никола Тесла свой резонансный трансформатор и электрический автомобиль с неведомой коробочкой. А то и вовсе, заширялась бы в подъездах, лишённая идей вселенского масштаба.

И начнём мы с расчёта самого простого LC-фильтра – колебательного контура.

Включённый по приведённой на рис.1 схеме, он представляет собой узкополосный полосовой фильтр, настроенный на частоту fо= 1/2π√ LС .
На резонансной частоте сопротивление контура равно:
Rо = pQ, где р – характеристическое сопротивление, равное реактивному сопротивлению катушки и конденсатора.
Оно в свою очередь рассчитывается по формуле р = √ L/C .

На низких (звуковых) частотах конденсаторы практически не вносят потерь, поэтому добротность контура равна добротности катушки индуктивности, величина которой напрямую зависит от активного сопротивления катушки. Чем ниже частота, тем больше витков и тоньше провод, тем проще его измерить тестером. Если эта попытка удалась, то Q=2πfL/R, где R – активное сопротивление катушки индуктивности.
На радиочастотах значение активного сопротивления катушки может составлять доли ома, поэтому для расчёта добротности надо – либо найти сопротивление в Омах по формуле R= 4ρ*L/(πd²), где ρ — удельное сопротивление меди, равное 0,017 Ом•мм²/м, L – длина в метрах, d – диаметр провода в мм, либо вооружиться генератором сигналов, каким-либо измерителем уровня выходного сигнала с высоким внутренним сопротивлением, и определить добротность экспериментально.
К тому же на высоких частотах возможно проявление влияния добротности конденсатора, особенно если он окажется варикапом, хотя современные недорогие керамические изделия (например, фирмы Murata) имеют значение параметра добротности – не менее 800.

Нарисуем табличку с расчётом фильтра для низкочастотных приложений.

ТАБЛИЦА ДЛЯ LC- РЕЗОНАНСНОГО (ПОЛОСОВОГО) ФИЛЬТРА ДЛЯ НЧ.

Если параметр активного сопротивления катушки R опущен, его значение принимается равным 200 омам.
Необходимо отметить, что все полученные в таблице данные верны и для последовательного колебательного контура. При этом, если мы хотим использовать свойства контура полностью, т. е. получить острую резонансную кривую, соответствующую конструктивной добротности, то параллельный контур надо нагружать слабо, выбирая R1 и Rн намного больше Rо (на практике десятки кОм), для последовательного же контура, сопротивление генератора R1 наоборот должно быть на порядок меньше характеристического сопротивления ρ.

Теперь, нарисуем таблицу для расчёта высокочастотных резонансных контуров.
Тут на добротность влияет не только активное сопротивление катушек, но и другие факторы, такие как – потери в ферритах, наличие экрана, эффект близости витков и т. д. Поэтому вводить этот параметр в качестве входного я не стану – будем считать, что добротность катушки вы измерили, или подсмотрели в документации на готовые катушки. Естественным образом значение добротности катушки должно измеряться на резонансной частоте контура, ввиду прямой зависимости этой величины от рабочей частоты (Q=2πfL/R).
К тому же я добавлю сюда параметр добротности конденсатора, особенно актуальный в случае применения варикапов.
По умолчанию (для желающих оставить эти параметры без внимания), добротность катушки примем равной 100, конденсатора – 1000, а для испытывающих стремление измерить эти параметры в радиолюбительских условиях, рекомендую посетить страницу ссылка на страницу .

ТАБЛИЦА ДЛЯ LC- РЕЗОНАНСНОГО (ПОЛОСОВОГО) ФИЛЬТРА ДЛЯ ВЧ.

Теперь плавно переходим к LC фильтрам верхних и нижних частот (ФВЧ и ФНЧ).

Рис.2

Крутизна спада АЧХ этих фильтров в полосе подавления – 12 дБ/октаву, коэффициент передачи в полосе пропускания К=1 при R1 << ρ << Rн, где R1 – внутреннее сопротивление генератора, Rн – сопротивление нагрузки, а ρ – характеристическое сопротивление фильтра.
Однако наилучшие параметры, с точки зрения равномерности АЧХ и передачи максимальной мощности в нагрузку, обеспечиваются при R1=Rн=ρ. В этом случае фильтр является согласованным, правда коэффициент передачи в полосе пропускания становится равным К=0.5.
Ну да ладно, ближе к делу.

ТАБЛИЦА LC- ФИЛЬТРОВ ВЕРХНИХ и НИЖНИХ ЧАСТОТ.

А если надо рассчитать L и C при известных значениях Fср и ρ ? Не вопрос,

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ LC- ФИЛЬТРОВ ВЕРХНИХ и НИЖНИХ ЧАСТОТ.

Данные ФВЧ и ФНЧ называются Г-образными.
Для получения более крутых скатов АЧХ используют два или более Г-образных звеньев, соединяя их последовательно, чтобы образовать Т-образное звено (на Рис.3 сверху), или П-образное звено (на Рис.3 снизу). При этом получаются ФНЧ третьего порядка. Обычно, ввиду меньшего количества катушек, предпочитают П-образные звенья.

Рис.3

ФВЧ конструируют подобным же образом, лишь катушки заменяются конденсаторами, а конденсаторы – катушками.

Широкополосные полосовые LC – фильтры получают каскадным соединением ФНЧ и ФВЧ.

Что касается многозвенных LC-фильтров высоких порядков, то более грамотным решением (по сравнению с последовательным соединением фильтров низших порядков) будет построение подобных устройств с использованием полиномов товарищей Чебышева или Баттерворта.

Именно такие фильтры 3-го, 5-го и 7-го порядков мы и рассмотрим на следующей странице.

Комментарии запрещены.

Присоединяйся