Канальная прокладка тепловых сетей

Тепловая сеть – это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя (воды или пара) от источника (ТЭЦ или котельной) к тепловым потребителям.

От коллекторов прямой сетевой воды ТЭЦ или от районных котельных с помощью магистральных теплопроводов горячая вода подается в городской массив. Магистральные теплопроводы имеют ответвления, к которым присоединяется внутриквартальная разводка к центральным тепловым пунктам (ЦТП). В ЦТП находится теплообменное оборудование с регуляторами, обеспечивающее снабжение квартир и помещений горячей водой.

Теплопроводы могут быть подземными и надземными.

Надземные теплопроводы обычно прокладывают по территориям промышленных предприятий и промышленных зон, не подлежащих застройке, при пересечении большого числа железнодорожных путей, т.е. везде, где либо не вполне эстетический вид теплопроводов не играет большой роли, либо затрудняется доступ к ревизии и ремонту теплопроводов. На дземные теплопроводы долговечнее и лучше приспособлены к ремонтам.

Рис. Основные виды надземной прокладки теплопроводов а—на отдельно стоящих опорах (мачтах), б—на эстакадах, в — на подвесных (ва – Д) нтовых) конструкциях, 1 — металлическая "/ вершина, 2 — подвесные опоры, 3 — тяги

В жилых районах из эстетических соображений используется подземная прокладка теплопроводов, которая бывает бесканальной и канальной.

При бесканальной прокладке участки теплопровода укладывают на специальные опоры непосредственно на дне вырытых грунтовых каналов, сваривают между собой стыки, защищают их от воздействия агрессивной среды и засыпают грунтом. Бесканальная прокладка – самая дешевая, однако теплопроводы испытывают внешнюю нагрузку от давления грунта (заглубление теплопровода должно быть 0,7 м), более подвержены воздействию агрессивной среды (грунта) и менее ремонтопригодны.

Рис. Типы бесканальных теплопроводов ‘А — в сборной и монолитной оболочке; б — литые и сборно-литые; в — засыпные

При канальной прокладке теплопроводы помещаются в каналы из сборных железобетонных элементов, изготовленных на заводе. При такой прокладке теплопровод разгружается от гидростатического действия грунта, находится в более комфортных условиях, более доступен для ремонта.

По возможности доступа к теплопроводам каналы делятся на

проходные, полупроходные и непроходные.

Рис. Размещение трубопроводов и кабелей в коммуникационном коллекторе: 1- водопровод; 2- электрические кабели; 3- светильник; 4- технологические трубопроводы; 5- теплопроводы

В проходных каналах кроме трубопроводов подающей и обратной сетевой воды, размещают водопроводные трубы питьевой воды, силовые кабели и т.д. Это наиболее дорогие каналы, но и наиболее надежные, так как позволяют организовать постоянный легкий доступ для ревизий и ремонта, без нарушения дорожных покрытий и мостовых. Такие каналы оборудуются освещением и естественной вентиляцией.

Внутренние габариты коллекторов определяются следующими требованиями:

A) ширина прохода должна быть не менее 800 мм, высота 1800 мм;

Б) расстояние в свету от поверхности изоляции теплопроводов до стенки и пола коллектора – 200 мм при диаметре трубопровода 500.. .700 мм и 220 мм при диаметре трубопровода 800. 900 мм и до перекрытия коллектора соответственно – 120 и 150 мм;

B) расстояния между поверхностями изоляции теплопроводов — 200 мм (при диаметре трубопроводов 500.. .900 мм);

Г) расстояние от поверхности труб водопровода, напорной канализации и воздуховодов до строительных конструкций коллектора и до кабелей не менее 200 мм;

Д) расстояние по вертикали между консолями для укладки силовых кабелей – 200 мм, для контрольных кабелей и кабелей связи — 150 мм;

Е) горизонтальное расстояние в свету между силовыми кабелями должно быть равно диаметру кабеля, но не менее 35 мм.

Рис. 3.2. Прокладка сети теплоснабжения в непроходном канале: а – сборный из железобетонных плит; б – сводчатый с опорной рамой;

1- железобетонное основание: 2- стеновой блок; 3- навесная теплоизоляция; 4- блок перекрытия; 5- подушка; 6- железобетонный свод

Непроходные каналы позволяют разместить в себе только подающий и обратный теплопроводы, для доступа к которым необходимо срывать слой грунта и снимать верхнюю часть канала. В непроходных каналах и бесканально прокладывается большая часть теплопроводов, Непроходные каналы применяют для труб диаметром 500-700 мм. Каналы могут быть железобетонными, асбестоцементными и металлическими. Снаружи каналы изолируют от влаги битумом и оклеивают гидрозащитным материалом.

Полупроходные каналы сооружают в тех случаях, когда к теплопроводам необходим постоянный, но редкий доступ. Полупроходные каналы имеют высоту не менее 1400 мм, что позволяет человеку передвигаться в нем в полусогнутом состоянии, выполняя осмотр и мелкий ремонт тепловой изоляции.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9491 – | 7458 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Основными видами прокладками трубопроводов являются подземная и надземная. Подземная прокладка трубопроводов наиболее распространена. Она подразделяется на прокладку трубопроводов непосредственно в земле (бесканальная) и в каналах. При наземной прокладке трубопроводы могут находиться на земле или над землей на таком уровне, что бы они не препятствовали движению транспорта. Надземные прокладки применяются на загородных магистралях при пересечении оврагов, рек, железнодорожных путей и других сооружений.

Читайте также:  Как самостоятельно сделать беседку

Надземные прокладки трубопроводов в каналах или лотках расположенных на поверхности земли или частично заглубленных, применяются, как правило, в районах с вечномерзлыми грунтами.

Способ монтажа трубопроводов зависит от местных условий объекта – назначения, эстетических требований, наличия сложных пересечений с сооружениями и коммуникациями, категории грунта – и должен приниматься на основании технико-экономических расчетов возможных вариантов. Минимальные капитальные затраты требуются на монтаж теплотрассы с использованием подземной прокладки труб без излояции и каналов. Но значительные потери тепловой энергии, особенно во влажных грунтах, приводят к существенным дополнительным затратам и к преждевременному выходу трубопроводов из строя. В целях обеспечения надежности работы теплопроводов необходимо применять механическую и тепловую их защиту.

Подземная прокладка трубопроводов.

При монтаже трубопроводов тепловых сетей под землей могут быть использованы два способа:

Непосредственная прокладка труб в земле (бесканальная).

Прокладка труб в каналах (канальная).

Прокладка трубопроводов в каналах.

Для того, что бы защитить теплопровод от внешних воздействий, и для обеспечения свободного теплового удлинения труб предназначены каналы. В зависимости от количества прокладываемых в одном направлении теплопроводов применяют непроходные, полу проходные или проходные каналы.

При бесканальной прокладке защиту трубопроводов от механических воздействий выполняет усиленная тепловая изоляция — оболочка.

Достоинствами бесканальной прокладки трубопроводов являются: сравнительно небольшая стоимость строительно-мон­тажных работ, уменьшение объема земляных работ и сокращение сроков строительства. К ее недостаткам относятся: усложне­ние ремонтных работ и затруднение перемещения трубопроводов, зажатых грунтом. Бесканальную прокладку трубопроводов широко применяют в сухих песчаных грунтах. Она находит применение в мокрых грунтах, но с обязательным устройством в зоне расположения труб дренажа.

Надземная прокладка трубопроводов.

Если исходить из удобства монтажа и обслуживания то прокладка труб над землей является более выгодна чем прокладка под землей. Так же это требует меньших материальных затрат. Однако это поритит внешний вид окружающей среды и поэтому такой вид прокладки труб не везде может применяться.

Несущими конструкциями при надземной прокладке трубопроводов служат: для небольших и средних диаметров — надзем­ные опоры и мачты, обеспечивающие расположение труб на нужном расстоянии от поверхности; для трубопроводов больших диаметров, как правило, опоры-эстакады. Опоры, обычно, выполняют из железобетонных блоков. Мачты и эстакады могут быть как стальными, так и железобетонными. Расстояние между опорами и мачтами при надземной прокладке должно быть равно расстоянию между опорами в каналах и зависит от диаметров трубопроводов. В целях сокращения количества мачт устраивают при помощи растяжек промежуточные опоры.

И.Б. Новиков, заместитель главного инженера – начальник управления проектирования инженерных сетей. ОАО «Объединение ВНИПИэнергопром», г. Москва

(Обзор выполнен по заказу компании Dalkia; редакция журнала НТ благодарит Жана Гравеллье за предоставленные материалы)

Типы прокладки тепловых сетей

Основными типами прокладки тепловых сетей в РФ на сегодняшний день являются наземная и канальная прокладка. Из общей протяженности тепловых сетей, составляющей более 257 тыс. км в однотрубном исчислении [1], более 85% составляют сети подземной прокладки в каналах. Эта особенность обусловлена сосредоточением основной массы теплосетей в районах городской застройки (наземная прокладка запрещена в пределах поселений) и применением устаревших технологий (отсутствие в период строительства пред- изолированных трубопроводов для бесканальной прокладки на отечественном рынке) в тепловых сетях. Подземная (канальная) прокладка в 90% случаев предусматривается в непроходных каналах и в 10% случаев – в проходных и полупроход- ных каналах. Наземная прокладка тепловых сетей характерна для небольших поселений численностью до 30 тыс. чел., в которых теплоснабжение осуществляется от местных котельных и диаметры трубопроводов не превышают 300 мм.

С 1990-х гг., как известно, в России активно внедряются новые технологии бесканальной прокладки с использованием предизолированных трубопроводов в пенополиуретановой (ППУ) изоляции (кроме труб в ППУ изоляции для бесканальной прокладки используются и другие типы изоляции, о которых будет сказано ниже – прим. авт.). Основное распространение бесканальная прокладка получила в крупных мегаполисах и городах с наличием производственной базы (цехов по производству предизолированных труб) в транспортной доступности. В основном бесканальная прокладка используется при новом строительстве и реконструкции (изменение пропускной способности трубопроводов и трассировки) тепловых сетей. При капитальном ремонте отдельных участков трубопроводов теплоснабжающими организациями обычно сохраняется существующая канальная прокладка (так называемая традиционная прокладка).

Кроме этого, следует отметить еще два типа прокладки, применяемых локально: прокладка трубопроводов теплосетей в коммуникационных коллекторах и футлярах. Применение коллекторов для прокладки тепловых сетей находит отражение в городах с плотной застройкой и городах, где традиционно (в целях снижения площадей под технические коридоры инженерных коммуникаций) объединялись прокладки различных коммуникаций. Теплосети, проложенные в коллекторах, подвергаются постоянной диагностике, имеют средства электрохимической защиты и в связи с наличием постоянного доступа персонала для текущего ремонта в 80-90% случаев имеют увеличенный срок службы (25-30 лет) по сравнению с «традиционными» видами проклад-

Читайте также:  Квартирный вопрос на нтв ванные комнаты

ки, который ограничивается только коррозионным износом стального трубопровода. Прокладка в футлярах (гильзах) в основном используется для прокладки теплосети под проезжей частью улиц, где планово высотное расположение соседних коммуникаций или высокие капитальные затраты не позволяют устройство проходного канала.

Основными характеристиками прокладки тепловых сетей являются следующие показатели.

1. Для канальной прокладки характерно:

■ применение в качестве строительных конструкций железобетонных лотковых элементов, изготовляемых индустриальным методом;

■ применение навесных типов изоляции;

■ наличие камер на линейной части тепловых сетей для установки арматуры, узлов водовыпуска и штуцеров для спуска воздуха.

К достоинствам канальной прокладки относятся:

■ низкие напряжения в металле трубопроводов;

■ защита трубопроводов тепловых сетей и изоляции от внешних повреждений;

■ дополнительная защита жизнедеятельности граждан при разрывах трубопроводов в связи с наличием ограждающих конструкций и дренажной системы.

2. Для бесканальной прокладки характерно:

■ отсутствие ограждающих конструкций для трубопроводов;

■ применение предизолированных трубопроводов;

■ отсутствие камер для доступа персонала. Достоинствами бесканальной прокладки являются:

■ снижение объема земляных работ при строительстве и ремонте теплопроводов;

■ наличие системы оперативно-дистанционного контроля (для трубопроводов в ППУ изоляции);

■ возможность прокладки трубопроводов в условиях высокого уровня грунтовых вод и отсутствия возможности устройства дренажных сетей.

3. Для наземной прокладки характерно:

■ прокладка трубопроводов тепловой сети на опорах над поверхностью земли с использованием в качестве опорных конструкций ж/б блоков типа ФБС;

■ использование навесной изоляции из волокнистых типов изоляции;

■ устройство наземных павильонов для защиты арматуры, узлов водовыпуска и воздушников от несанкционированного доступа.

Основными преимуществами использования наземной прокладки являются:

■ низкие напряжения в металле трубопроводов;

■ отсутствие земляных работ при прокладке, реконструкции и ремонте теплопроводов, что снижает капитальные затраты на 60-70%.

Основными типами тепловой изоляции трубопроводов теплосетей в настоящее время являются:

■ изоляция из прошивных минераловатных матов;

■ изоляция из базальтового волокна;

■ изоляция из армопенобетона (АПБ);

■ пенополимербетонная (ППБ) изоляция;

■ пенополиуретановая (ППУ) изоляция;

■ пенополимерминеральная (ППМ) изоляция;

■ изоляция из пенополиэтилена.

Два первых типа изоляции применяются для наземной и канальной прокладки, а изоляция из АПБ, из пенополиэтилена, ППБ, ППУ и ППМ изоляция – для бесканальной прокладки. При этом применение изоляции из базальтового волокна и минеральной ваты невозможно на бесканально проложенных трубопроводах, а остальные типы изоляции, несмотря на то, что в основном используются при бесканальной прокладке, могут применяться при любых видах прокладки.

В настоящее время бесканальная прокладка трубопроводов, безусловно, широко востребована, но если рассматривать весь спектр рынка изоляционных конструкций, то стоит обратить внимание на изоляционные конструкции максимальной заводской готовности. В ряду таких особого внимания заслуживает изоляция конструкции типа СТУ. Конструкция этой навесной изоляции позволяет в разы сократить сроки производства работ на наземной и канальной прокладке и имеет следующие преимущества над аналогами:

■ сохранение своих геометрических характеристик в процессе монтажа и эксплуатации (отсутствие «сминания» при устройстве покровного слоя и провисания при эксплуатации);

■ снижение веса 1 п м трубопровода в изоляции;

■ повышенная гидроизоляция за счет использования гидрофобного покровного слоя;

■ возможность многократного применения, что особенно актуально на байпасах теплосети;

■ доступность трубопровода для визуального контроля и ведения ремонтных работ;

■ наличие элементной базы для изоляции компенсаторов и арматуры.

В соответствии со СНиП 41-03-2003* [2], основные технические характеристики различных теплоизоляционных изделий для трубопроводов теплосетей приведены в табл. 1.

Таблица 1. Основные технические характеристики различных теплоизоляционных изделий для трубопроводов тепловых сетей [2].

Разделяя принципы выбора технологий при строительстве теплосетей на технические и экономические, можно выделить следующие подходы.

■ удобство строительства и эксплуатации;

■ унификация с существующими технологиями прокладки сетей;

■ наличие квалифицированного персонала для эксплуатации;

■ наличие технической базы для ведения текущего ремонта;

■ капитальные затраты в строительство и материалы;

■ снижение эксплуатационных затрат;

■ наличие производственной базы в транспортной доступности от объекта строительства.

В табл. 2 приведены усредненные показатели стоимости строительства 1 км тепловой сети (с учетом стоимости проектно-изыскательских работ, материалов, устройства объездных дорог и освоения территории).

Таблица 2. Стоимость строительно-монтажных работ на прокладку 1 км тепловых сетей, включая монтаж, временные дороги, освоение территории (по укрупненным показателям на ноябрь 2010 г., без учета НДС)*.

При анализе факторов, влияющих на выбор применяемых технологий, зачастую оказывается, что отсутствие финансирования, производственных баз и опыта эксплуатации, приводит к применению «традиционных» методов ремонта и строительства тепловых сетей с использованием низкоэффективных технологий и методов проведения работ.

Читайте также:  Какой краской покрасить печь в бане железную

В настоящее время в рамках Федерального закона от 23.11.2009 г № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности.» и Федерального закона от 27.07.2010 г № 190-ФЗ «О теплоснабжении» большинство

крупных российских теплоснабжающих компаний уже разработали (или разрабатывают) инвестиционные программы по внедрению инновационных технологий в теплоснабжении для повышения его надежности и энергоэффективности. Но эти программы в большинстве своем не охватывают муниципальные предприятия и службы ЖКХ, не принадлежащие частным компаниям и компаниям с государственным участием. Муниципальные предприятия, несмотря на обязательства к ним по тем же указанным выше федеральным законам (№ 261-ФЗ и № 190-ФЗ), ограничены в своей работе Федеральным законом от 21.07.2005 г № 94- ФЗ «О размещении заказов. », по которому основным критерием выбора технологий, поставщика или подрядчика является цена, а не квалификация участника и качество продукции.

При таком положении дел создание системы качества, основанной на применении энергоэффективных технологий, качественном строительстве, проектировании и производстве материалов, становится практически невозможным.

Сегодняшнее состояние нормативно-технической базы тоже является переходным, т.к. в рамках Федерального закона от 27.12.2002 г. № 184-ФЗ «О техническом регулировании» до сегодняшнего дня идет перестройка норм и правил во всех отраслях, включая теплоснабжение: актуализируются нормы и правила, регламентирующие проектирование, строительство и требования к материалам, которые применяются в строительстве тепловых сетей. В ближайшее время в рамках гармонизации европейских стандартов (EN) и российских национальных стандартов к материалам, используемым при прокладке тепловых сетей, будут установлены более жесткие требования в части энергосбережения и надежности, что приведет к массовому изменению технологии производства, замене используемых материалов и изменению технологий производства работ при строительстве и проектировании тепловых сетей.

Оценивая в целом качество тепловых сетей и темпы их замены и ремонта, отметим, что износ тепловых сетей в России достигает 70%, а по некоторым регионам доходит до 100%. Для поддержания требуемого уровня надежности необходима перекладка до 7% (около 17000 км) протяженности всех тепловых сетей в РФ. Однако на сегодняшний момент перекладывается не более 5000 км в год, при этом 20-25% этих перекладок приходится на города «миллионники». Так, в Москве перекладывается ежегодно около 300 км тепловых сетей, в Санкт-Петербурге – 200 км. Объем использования энергоэффективных материалов при перекладках трубопроводов тепловых сетей еще ниже: в Москве, например, применение предизолированных стальных трубопроводов и пластиковых труб для ГВС с низким коэффициентом теплопроводности составляет 90% всего объема перекладок, а в Томске из максимальных 3 км (при суммарной протяженности 133 км) перекладки в год приходится только 1,5 км на инновационные технологии.

Внедряемые энергоэффективные технологии – это, в первую очередь, стальные предизолированные трубопроводы и трубопроводы из пластика для распределительных тепловых сетей и сетей ГВС. На сегодняшний день применение сшитого полиэтилена и нержавеющей гофрированной трубы в ППУ изоляции в наружных тепловых сетях зарекомендовало себя с положительной стороны. Конечно, требуется увеличение объемов производства и постоянное совершенствование технологий и конструкций, но в условиях плотной городской застройки, необходимости снижения капитальных затрат на производство строительно-монтажных работ и увеличения срока службы трубопроводов, перспективы применения таких трубопроводов видятся очень привлекательными для дальнейшего широкого внедрения.

Следует отметить, что суммарная мощность производителей одного из самых востребованных продуктов на рынке теплоснабжения, а именно труб в ППУ изоляции, составляет порядка 10 тыс. км в год, но используется эта мощность не более чем на 60%. А объем производства крупнейшего на российском рынке производителя (доля рынка которого составляет 80%) трубопроводов из сшитого полиэтилена для тепловых сетей на период с 2004 по 2010 гг. составил всего 3000 км.

Учитывая изложенное, можно сделать следующий вывод: наличие административных барьеров при создании качественных тепловых сетей, отсутствие инвестиционных программ и программ повышения надежности и эффективности приводят к дополнительным расходам теплоснабжающих и муниципальных предприятий, связанных с повреждениями, потерями и расходами на текущие ремонты, что в итоге сказывается на увеличении тарифа на тепловую энергию без повышения качества теплоснабжения.

При этом на законодательном уровне сегодня созданы все условия для обеспечения надежного и энергоэффективного теплоснабжения, повышения качества проектных и строительномонтажных работ, без создания дефицита бюджета с привлечением кредитных средств и прозрачными способами возврата инвестиций.

1. Шойхет Б.М. Тепловая изоляция трубопроводов тепловых сетей надземной и подземной канальной прокладки с применением материалов «Isotec» // Материалы конференции «Тепловые сети. Современные решения» (1719 мая 2005 г. НП «Российское теплоснабжение»).

2. СНиП 41-03-2003* «Тепловая изоляция оборудования и трубопроводов».

Комментарии запрещены.

Присоединяйся