Капиллярная влага в бетоне

Надежная защита от капиллярной воды, просачивающейся через поры и микротрещины бетона

Бетон, приготовленный по стандартной технологии, представляет собой структуру, пронизанную порами, капиллярами и микротрещинами, которые обусловлены технологией его приготовления и особенностями эксплуатации.
Благодаря такому физическому явлению, как поверхностное натяжение жидкости, вода самостоятельно просачивается сквозь бетон по существующим отверстиям. Это явление называется «капиллярная фильтрация». Наличие давления со стороны воды этот процесс, естественно, усилит.
Наиболее эффективная защита от такого проникновения воды – повышение водостойкости бетона за счет уменьшения размеров и количества присутствующих в нем пор и микротрещин. Для этого служат гидроизоляционные материалы проникающего действия «Пенетрон», который компания «Спецгидрострой» успешно применяет.

Наиболее типовыми являются три вида работ по гидроизоляции проникающего действия:

  • гидроизоляция бетонных элементов конструкций
  • гидроизоляция швов, стыков, сопряжений, примыканий, вводов коммуникаций;
  • исключение подсоса влаги между бетонным фундаментом и стеной из пористого материала.

Основной состав работ по гидроизоляции:

  • подготовка штрабы;
  • увлажнение штрабы и ее грунтование раствором «Пенетрона»;
  • подготовка раствора материала «Пенекрит» (со щебнем или без);
  • заполнение штрабы раствором «Пенекрита» шпателем или специальным насосом;
  • увлажнение штрабы и прилегающих областей и их покрытие в два слоя раствором «Пенетрона»

Этот же способ применяется и для гидроизоляции конструкций из бетонных блоков.

Позвоните по нашему телефону, чтобы узнать, как лучше защитить бетон на вашем объекте и какие работы необходимо проводить.

Принимаем к рассмотрению заявки на гидроизоляцию объектов площадью по полу от 65 м2.

Влагоперенос в бетоне является сложным и малоизученным процессом. Это обусловлено многими факторами, влияющими на функционирование транспортных механизмов в сочетании с различными типами пор, которые, как правило, пронизывают бетоны. Механизм капиллярного всасывания с большой уверенностью можно считать движущей силой в частично насыщенном объеме твердого тела сетью капиллярных пор.

В то же время не ясен механизм переноса влаги в порах геля. Ученые как в России, так и за рубежом считают, что размеры поргеля слишком малы чтобы капиллярные силы в них играли главную роль. В исследованиях [9–10] установлено, что главенствующую роль играет диффузный механизм переноса влаги.

Роль воздушных пустот в процессах массообмена в бетоне менее ясна. Размер воздушных пор намного больше, чем размеры капилляров, и механизм капиллярного всасывания в данном случае не применим. Он не работает. Воздушные поры играют остановочную роль в переносе влаги [11–12].

Транспортные механизмы определяются размерами пор, видом вяжущего, химическими добавками, пропитками, размерами поперечного сечения образцов.

Поэтому во время проведения исследований перед нами, стояла задача разработать модель для прогнозирования движения воды в бетоне при различных типах воздействия и создать механизм для снижения капиллярного насыщения материалов из бетона. Поэтому ограничиваемся рассмотрением потока жидкости за счет капиллярного всасывания.

Простейшая теоретическая модель, которая связывает высоту поднятия жидкости по капилляру с радиусом пор r в бетонах для двухкомпонентной системы может быть определена по формуле Жюрена (полученная из формулы Лапласа для определения подъемной силы мениска)

(1)

где α – поверхностное натяжение жидкости (для воды α = 72,8 дин/см при t = 20 °С); Θ – краевой угол смачивания; r – радиус капилляра; g – ускорение силы тяжести; ρ – плотность воды.

При полном смачивании всех частиц материала капилляра (Θ = 0) и численных значениях α и g

Отсюда следует, что высота поднятия жидкости по капиллярам обратно пропорциональна радиусу капилляра. В то же время исследованиями было выявлено, что, на высоту подъёма жидкости в капиллярно пористом материале влияет время экспозиции и тогда зависимость высоты подъёма жидкости от времени определяется по формуле

(3)

где Ht – высота капиллярного поднятия воды в бетонах; μ – динамическая вязкость жидкости.

Уравнение (3) показывает: высота капиллярного поднятия воды в бетонах пропорциональна квадратному корню от времени экспонирования. Уравнение (3) описывает модель трубы (капилляра) из бетона, представляющей пористую среду, и является приближенной.

В общем случае, перенос жидкости происходит через поры, микротрещины и пустоты бетона. При нормальных условиях со средним содержанием влаги и умеренной температуры основной движущей силой транспортного процесса в пористой среде являются градиенты влаги и температуры. При низком содержании влаги основным механизмом переноса влаги осуществляется путем диффузии пара или капиллярного всасывания, когда поры находятся в контакте с жидкостью.

В течение последнего десятилетия все большая часть применяемого бетона обладает малой капиллярной пористостью. Это связано с переходом от традиционных бетонов к высокоэффективным реакционно порошковым с более низкой пористостью. В этих бетонах происходит трансформация реологической матрицы, обеспечивающая получение рациональной реологии [1, 2]. При этом составляющие реологическую матрицу микродисперсная каменная мука, тонкозернистые и мелкий пески выступают активными компонентами, влияющими на формирование порового пространства бетона [2].

Тем не менее, несмотря на снижение капиллярной пористости, при низких значениях W/В отношения, такие бетоны после предварительной сушки показывают картину водонасыщения типичную для традиционных бетонов, описываемую формулой (3) при одностороннем всасывании жидкости через капилляры. В результате исследований было установлено, что процесс водонасыщения бетона зависит от степени насыщения пор в начальный момент [3].

Экспериментальные данные [4, 8] свидетельствуют, что размер поперечного сечения образца существенно влияет на транспортный механизм водопоглощения. Формулы, описывающие теоретически процесс водонасыщения бетонного образца, не могут в точности описать происходящие явления, так как вступают в противоречие с нашими первоначальными допусками, которые предполагают последующее набухание геля. Отклонения также происходят и за счет изменения в капиллярной абсорбции [4].

Молекула воды является диполем, равным по величине, но разным по знаку электрических зарядов на противоположных ее концах, а частицы вяжущего заполнителя на своей поверхности имеют положительные и отрицательные электрические заряды, в зависимости от того, из каких материалов состоит частица.

Под действием зарядов частиц происходит ориентация диполей воды. Расположением молекул воды в капилляре можно иллюстрировать процесс между двумя параллельными плоскостями стекол, частично погруженных в воду. Вода в узкой щели капилляра находится в напряженном состоянии, вызванном взаимодействием зарядов системы капилляр – вода.

Согласно теории Лапласа [1] в напряженном состоянии находится поверхностная пленка жидкости, а остальная часть жидкости не связана со стенками капилляра. Помимо электрических сил на молекулы воды в капилляре действуют и силы гравитации. Из условия статического равновесия между электрическими силами и гравитационными следует, что высота подъема воды в капилляре равна

(4)

где h – высота столба жидкости в щели капилляра; qс – суммарный электрический заряд, приходящийся на 1 см2 стенки щели; qв – суммарный электрический заряд молекулы воды, расположенный на 1 см2 срединной плоскости; ε – диэлектрическая постоянная; r 2 – расстояние между плоскостями щели; ρв – плотность воды.

В бетонах капилляр представляется тонкой трубочкой, а не щелью. В результате чего притяжение к стенкам будет больше, чем в плоской щели.

(5)

Для экспериментов использовали цилиндрические образцы бетона диаметром 100 мм, изготовленные при В/Ц отношении 0,51 (рис. 1). Материалы: портландцемент Вольский ЦЕМ II/А-42,5 Н; песок Сурский с Мкр = 1,51; щебень гранитный фракции 3–8 мм; вода питьевая. Испытывали шлакощелочные бетоны (ШЩБ) на составах идентичных портландцементов. Высота цилиндрических образцов100 мм. На расстоянии 30 и 50 мм от основания образца делалась проточка алмазным диском на глубину 30 мм. Погружение образца в воду осуществлялось на глубину 10 мм. Время экспозиции: 3, 6, 9, 12, 15 мин, 1 ч, 2, 3, 4…48 ч. Испытания проводили на образцах в возрасте 28 суток твердения в нормальных условиях после сушки в сушильном шкафу при температуре 105 °С до постоянного веса. Боковая поверхность образцов обрабатывалась кремнийорганическим составом на всю высоту с целью исключения бокового всасывания влаги.

Зависимость прироста массы образцов от времени экспозиции представлена на рис. 2.

Рис. 1. Бетонные образцы для испытания на водопоглощение: а – с проточкой на расстоянии 30 мм; б – с проточкой на расстоянии 50 мм; в – без проточки

Рис. 2. Зависимость водопоглощения бетонных образцов при В/Ц = 0,51 (образцы представлены на рис. 1)

Полученные экспериментальные данные свидетельствуют, что форма, площадь поперечного сечения образца существенно влияют на кинетику водопоглощения, определяемую диффузией и капиллярным транспортным механизмом поднятия воды. Данная зависимость не является линейной и носит квадратичную зависимость. Полагаем, что капиллярные разрывы, состоящие из узких проходов или больших пустот вдоль пути движения водяного потока по системе капиллярных пор, могут создавать дополнительные препятствия. И тем самым вносятся граничные условия на процессы массопереноса в пористом теле. По существу, необходимо вносить в рассматриваемую модель условия, связанные с ветвистостью капилляров, выходом их на боковые поверхности и на возможные крупные поры.

В настоящей работе были проведены исследования возможности улучшения стойкости бетонов в условиях капиллярного водонасыщения бетонов путем введения технической «прививки» порового пространства. В качестве «прививочного» материала использовано отработанное машинное масло, вводимое на стадии приготовления шлакощелочного бетона (ШЩБ).

Традиционные исследования для получения материалов с повышенной стойкостью направлены на получение бетонов с низкой капиллярной пористостью и высокой плотностью конгломератов в зоне контакта заполнителя с вяжущим.

П.Н. Гончаров, А.А. Пащенко, и Б.А. Крылов исследовали ШЩБ в условиях капиллярного подсоса, армированных дисперсными материалами.

Было установлено, что ШЩБ обладают повышенной коррозионной стойкостью в углеводородных средах и кислых неорганических растворах, вследствие низкой капиллярной пористости, высокой плотности бетонов и адгезии к полиакриловым армирующим волокнам. Высокая стоимость армирующих материалов ограничивает широкое применение.

Однако предложенная нами технология формирования макро- и микроструктуры бетона способствует созданию механизма «избирательности» по отношению к агрессивным внешним воздействиям, т.е. происходит самоорганизация внутреннего пространства пор.

Все исследования проводились на гранулированных шлаках Новолипецкого, Челябинского и Череповецкого металлургических заводов, электротермофосфорном шлаке ПО «Фосфор» (г. Тольятти). В качестве активаторов твердения использованы растворы: NaOH, Na2SiO3·nH2O, содощелочной плав (СЩП) и их композиции.

Шлакощелочное вяжущее (ШЩВ) отличается от портландцемента отсутствием в продуктах гидратации высокоосновных гидросиликатов и гидроалюмосиликатов кальция.

В.Д. Глуховский и О.Н. Сикорский [4] установили, что ШЩВ взаимодействует практически со всеми силикатными и алюмосиликатными пылеватыми частицами, входящими в состав заполнителя, что способствует получению высокой плотности композита. А в продуктах гидратации доминируют гидрогранаты и низкоосновные гидросиликаты кальция.

Нами было установлено, что шлакощелочные бетоны, приготовленные на растворе NaOH, по сравнению с бетонами на портландцементе имеют в 1,1–1,5 раза больше крупных пор с эффективным диаметром более 0,1 см.

Использование в качестве активатора твердения раствора Na2SiO3•nH2O способствует снижению диаметра пор и капилляров в 1,5–2 раза.

При введении диспергированного машинного масла в ШЩВ происходит модификация внутренней поверхности пор, капилляров и зон контакта продуктов гидратации ШЩВ с заполнителями, доказательством которого служит явление капиллярного подсоса и угла смачивания.

Молекула воды является диполем, равным по величине, но разным по знаку электрических зарядов на противоположных ее концах, а частицы шлака, заполнителя на своей поверхности имеют положительные и отрицательные электрические заряды, в зависимости от того, из каких материалов состоит частица. Водный раствор солей в капилляре находится в напряженном состоянии, вызванном взаимодействием зарядов системы капилляр – вода. Исходя из равенств (4) и (5) можно предположить, что если стенки капилляров, пор и разрывов внутренней сплошности пористого тела не будут иметь электрического заряда за счет поверхностного слоя моторного масла, то никакого капиллярного всасывания за счет электрических зарядов не будет или будет ограничено. Это подтверждено нашими опытами. ШЩБ с модифицированной структурой дисперсным машинным маслом практически не впитывают масла, растворы солей и сахара. Это способствует повышению долговечности бетонных изделий на основании ШЩВ. На рис. 3 представлена кинетика водопоглощения ШЩБ при Р/Ш отношении 0,5.

Рис. 3. Зависимость водопоглощения ШЩБ образцов при В/Ц = 0,5 (образцы представлены на рис. 1)

Прослеживаются отклонения от правил, используемых для описания процесса водопоглощения пористым телом:

  • мелкопористая структура бетонных образцов характеризуется наличием капилляров с диаметром порядка нескольких ангстрем.

Очень маленький расчетный размер пор, а также модифицирование поровой поверхности поверхностно-активными веществами свидетельствуют о том, что структура пор сильно препятствует проникновению воды. Это вызывает блокирование пор в бетоне и приводит к низкой проницаемости. Тогда механизмы капиллярного всасывания не могут самостоятельно объяснить процессы водопоглощения пористым телом.

  • Полученные результаты по изучению капиллярного водопоглощения свидетельствуют, что процесс этот протекает длительное время. Они не совпадают с теоретически рассчитанными. Экспериментальные данные получены ниже расчетных [14, 20–21].
  • Поглощение воды сухих образцов бетона зависит от поперечного сечения активной поверхности и траекторий линий всасывания. Таким образом, динамика, всасывания воды капиллярами неадекватно описывается уравнениями (1), (2), (3), (4). Транспортные свойства капилляров бетона были изучены при введении ряда граничных условий: бетон рассматривается как изотропный материал с однородной пористой структурой.

1. Результаты, полученные в экспериментальных исследованиях недостаточны для оценивания всех искомых параметров влагопереноса в бетонных образцах и поэтому поиск оптимальной модели не может завершиться на данном этапе.

2. Все компоненты композиционного материала – бетона обладают пористостью различного уровня. На перемещение влаги по капиллярам бетона накладываются условия, обусловленные параметрами капилляров и механизмами взаимодействия воды с продуктами гидратации клинкерного фонда вяжущего.

3. В рассматриваемых моделях не были учтены особенности высокоразвитой поверхности пор цементного камня и геля, а также выходы на боковую поверхность образцов.

4. В связи со сложностью создания приближенной модели переноса влаги в бетонных образцах были исследованы явления, связанные с поглощением и переносом влаги. При этом рассматривали движение по капиллярам большого диаметра и непосредственно за счет диффузии.

5. Установлено, что активное использование «прививочного» материала в качестве модификатора структуры бетона позволяет существенно влиять на процессы влагопереноса в бетонных изделиях и повысить эксплуатационные свойства.

Термин «плотность бетона» применяется в двух значениях:

  • степень заполнения объема бетона твердым веществом, т. е. величина, обратная пористости (относительная плотность);
  • масса единичного объема бетона (средняя плотность).

Пористость бетона уже была рассмотрена ранее. Она составляет обычно 10—15%, т. е. соответствующая относительная плотность бетона — 85-90%.

Рассматривая среднюю плотность, следует различать плотность бетонной смеси и бетона.

Расчетная плотность бетонной смеси (без учета содержащегося в ней воздуха) определяется как суммарная масса ее компонентов на 1 м3 смеси. Фактическая плотность смеси определяется экспериментально. Она на 1-3% меньше расчетной, что соответствует содержанию воздуха в бетонной смеси.

Плотность бетона отличается от фактической плотности бетонной смеси. Бетон, твердевший и/или эксплуатирующийся в воде, имеет большую плотность, так как вода дополнительно подсасывается в контракционные пространства.

При эксплуатации на воздухе значительная часть воды, не связанной химически, испаряется. Ее количество зависит от влажности окружающего воздуха (или диапазона колебаний влажности). Плотность бетона становится ниже, чем бетонной смеси.

Для бетонной смеси, фактическая плотность составила 2340 кг/м 3 . Для бетона, эксплуатирующегося в воде, приняв объем контракции 24 л/м 3 , получим плотность 2364 кг/м 3 . При его эксплуатации на воздухе, при количестве химически связанной воды 15% и равновесной влажности 3%. получим плотность 2255 кг/м 3 . Полностью высушенный бетон будет иметь плотность 2190 кг/м 3 .

Влажность и водопоглощение бетона

Основная часть пор в бетоне — капиллярные и гелевые — образует открытую пористую систему, которая легко заполняется водой. Различают несколько видов влажности бетона в зависимости от условий его эксплуатации.

Сорбционная влажность. Гелевые поры и микрокапилляры (до 0,1 мкм) конденсируют пары воды из воздуха, полностью заполняясь влагой. Приобретаемая бетоном влажность, зависящая от влажности окружающего воздуха, называется сорбционной. Но так как влажность воздуха меняется, бетон «стремится» следовать за ней, то конденсируя, то испаряя влагу.

Часто дело ограничивается колебаниями влажности поверхностного слоя, тогда как внутренние слои бетона сохраняют усредненную равновесную влажность.

Капиллярный подсос. Следующий уровень увлажнения бетона достигается в конструкциях, частично находящихся в воде. При этом бетон, остающийся на воздухе, всасывает ее капиллярными порами. Высота капиллярного поднятия увеличивается при росте пористости. Она может составлять примерно 0,5 м. На практике это происходит в фундаментах, гидротехнических и иных сооружениях, часть которых находится в контакте с водой. Бетон в зоне капиллярного подсоса более уязвим при действии мороза, чем подводный (подземный) бетон или более сухой бетон вышележащих слоев.

Вода, достигшая верхнего уровня капиллярного подсоса, испаряется. Если она содержит соли, в зоне испарения концентрация солевого раствора повышается до пересыщения. Это приводит к кристаллизации солей, рост кристаллов может приводить к трещинам и разрушению бетона (солевая форма коррозии).

Водопоглощение бетона — влажность, приобретаемая им при выдерживании в воде. Для тяжелого бетона это основная влажностная характеристика. Гелевые поры при этом полностью заполняются водой, а капиллярные — почти полностью (в них защемляется некоторое количество воздуха). Воздушные поры остаются заполненными воздухом.

Водопоглощение бетона по массе составляет обычно 4-8%, а водопоглощение по объему — 9-18%. Последний показатель характеризует пористость бетона (если пренебречь защемлением воздуха в капиллярах и воздушными порами). Его часто рассматривают как открытую пористость бетона. Поры, доступные для воды, более негативно сказываются на ряде свойств бетона, чем условно-замкнутые поры.

Водопоглощение увеличивается с ростом В/Ц и объема цементного камня в бетоне и уменьшается в процессе его твердения.

Водопоглощение определяется при постепенном погружении образцов в воду. Водопоглощение позволяет уменьшить защемление воздуха в порах. По кинетике водопоглощения можно судить о размерах пор в бетоне (крупные поры быстрее поглощают воду).

Прочность бетона при его увлажнении и насыщении водой несколько снижается. Коэффициент размягчения бетона (отношение прочностей в водонасыщенном и сухом состоянии) составляет 0,85-0,9.

Водопоглощение бетона просто определяется и поэтому иногда используется как критерий его плотности, а для некоторых бетонов и нормируется.

“>

Гидроизоляция бетонных элементов конструкции
Гидроизоляция трещин, работы по предотвращению капиллярного проникновения воды через швы, стыки, сопряжения, примыкания, вводы коммуникаций проводятся с использованием материала «Пенекрит».
«Пенекрит» – это сухая смесь специального цемента, кварцевого песка определенной гранулометрии, запатентованных активных химических компонентов. Используется в условиях статически нагруженных сборных и монолитных бетонных конструкций. Возможно использование при капельных течах через швы, стыки, трещины и т.д. Отличается такими характеристиками, как:

  • высокая прочность;
  • отсутствие усадки;
  • высокая адгезия (прикрепление) к бетону, металлу, кирпичу и камню.
Для восстановления горизонтальной гидроизоляции (устранения капиллярного подсоса) между бетонным фундаментом и стеной из пористого материала (кирпич, дерево, ячеистый бетон и т.п.)
«Спецгидрострой» выполняет следующие работы:
• если фундамент состоит из рыхлого (пустотного) бетона, то он предварительно укрепляется инъецированием цементного безусадочного раствора;
• в бетонном фундаменте (с внутренней или внешней стороны) бурятся отверстия (шпуры) с глубиной не менее 2/3 толщины фундамента;
• бетон насыщается влагой;
• шпуры заполняются раствором «Пенетрона»;
• раствор утрамбовывается;
• оставшееся пространство заполняется раствором «Пенекрита».
Читайте также:  Как украсить проемы дверей

Комментарии запрещены.

Присоединяйся