Каскодная схема на транзисторах

Под каскодными схемами понимают двухкаскадные усилители на транзисторах, с любой из возможных схем включения их электродов, не имеющих межкаскадных частотно зависимых элементов. Каскодные схемы можно, подразделить на две группы:

схемы, в которых отдельные транзисторные каскады соединены цепочечно без дополнительных обратных связей. Такие соединения получили название регулярных (рисунок 14);

Рисунок 14 – Каскодная схема ОЭ-ОБ (общий эмиттер – общая база) с последовательным питанием

схемы, в которых отдельные транзисторы соединены в произвольной комбинации и с дополнительными обратными связями. Такие соединения называются нерегулярными (рисунок 15).

Рисунок 15 – Каскодная схема усилителя с динамической нагрузкой

Поскольку большинство каскодных схем используется обычно при работе с малыми сигналами, то представляют интерес линейные каскодные схемы, т.е. такие, в которых параметры не зависят от величины токов и напряжений в рабочем диапазоне их изменения, при этом считается, что режим по постоянному току не изменяется. На рисунке 16 приведены эквивалентные схемы по переменному току для 9 типов каскодных схем с регулярным соединением на двух транзисторах. Эти схемы отображаются эквивалентным четырехполюсником, состоящим из двух цепочечно соединенных четырехполюсников. Составляющие четырехполюсники замещают первый и второй транзистор каскодной схемы. Параметры первого транзистора будем обозначать одним штрихом, а второго транзистора – двумя штрихами. Упрощенные формулы для – параметров каскодных схем (рисунок 16) имеют следующий вид:

Для группы каскодных схем ОБ-ОБ, ОБ-ОК, ОБ-ОЭ, ОЭ-ОБ, ОЭ-ОЭ, ОЭ-ОК

(35)

так как и

Рисунок 16 – Эквивалентные схемы каскодных соединений по переменному току

Для каскодных схем ОК-ОЭ и ОК-ОК

(36)

так как

Для каскодной схемы ОК-ОБ

(37)

так как

Определив по формулам (35 – 37) -матрицу любой каскодной схемы, можно найти основные параметры этой каскодной схемы. Можно также выразить основные параметры той или иной каскодной схемы через характеристические параметры отдельных транзисторов.

У большинства каскодных схем максимальный коэффициент усиления по мощности больше, чем у усилителя с общим эмиттером на одном транзисторе. Максимальный коэффициент усиления по мощности у большинства схем чаще всего получить затруднительно, т.к. имеется ограничение на коэффициент усиления со стороны устойчивости. Однако качественно устойчивость может характеризоваться величиной . Наиболее часто для работы в широком диапазоне частот используется схема ОЭ-ОБ, у которойна 2-3 порядка ниже, чем у схемы с общим эмиттером, а коэффициент усиления по мощности в 2-3 раза выше. Там, где требуется устойчиво работать на еще более высоких частотах, находят применение схемы ОБ-ОБ, хотя они и не позволяют получить высокий коэффициент усиления по мощности из-за меньшей величины максимального коэффициента усиления по мощности. В импульсных усилителях находят применения схемы, имеющие возможно большее входное сопротивление. Некоторые каскодные схемы позволяет компенсировать температурный дрейф и применяются в усилителях постоянного тока.

Наиболее широкое применение в конструкциях резонансных усилителей получила каскодная схема ОЭ-ОБ. Входное сопротивление такого усилителя приблизительно равно входному сопротивлению первого транзистора (35), поэтому использование в первом каскаде полевого транзистора позволяет получить более высокое входное сопротивление и низкий уровень шума.

Хотя усилитель с ОБ (с общей базой) известен большей широкополосностью по сравнению со схемой с ОЭ (с общим эмиттером), для многих приложений низкое входное сопротивление (десятки Ом) схемы с ОБ является ограничением. Решение заключается в том, чтобы перед каскадом с ОБ с низким коэффициентом усиления поставить каскад с ОЭ, который обладает высоким входным сопротивлением (килоомы). Смотрите рисунок ниже. Каскады каскодной схемы включены последовательно, а не каскадно, как в стандартной схеме усилителя. Для примера каскадного усилителя смотрите схему «Разделительные конденсаторы, объединяющие три усилительных каскада с общим эмиттером» в последующем разделе «Соединение входов и выходов» данной главы. Схема каскодного усилителя обладает и широкополосностью, и умеренно высоким входным сопротивлением.

Каскодный усилитель состоит из усилителей с общим эмиттером и общей базой. На рисунке приведен эквивалент по переменному току, когда батареи питания и конденсаторы заменены перемычками

Ключом к пониманию широкополосности каскодной схемы является эффект Миллера. Эффект Миллера – это умножение широкополосной ёмкости коллектор-база на коэффициент усиления по напряжению AV. Эта емкость коллектор-база меньше емкости эмиттер-база. Таким образом, можно было бы подумать, что емкость коллектор-база будет оказывать слабое влияние. Однако в схеме с общим эмиттером выходной сигнал на коллекторе противоположен по фазе входному сигналу на базе. Сигнал на коллекторе противодействует через емкостную обратную связь сигналу на базе. Кроме того, обратная связь коллектора в (1 – AV) больше сигнала на базе. Имейте в виду, что AV является отрицательным числом для инвертирующего усилителя с общим эмиттером. Таким образом, небольшая емкость коллектор-база становится в (1 + |AV|) больше, чем ее фактическое значение. Это увеличение емкости уменьшает обратную связь по мере увеличения частоты, уменьшая отклик на высоких частотах у усилителя с общим эмиттером.

Читайте также:  Какой краской покрасить штампованные диски автомобиля самому

Примерный коэффициент усиления по напряжению усилителя с общим эмиттером на рисунке ниже равен –Rнагр/rЭ. Ток эмиттера с помощью смещения установлен на 1,0 мА. rЭ = 26мВ/IЭ = 26мВ/1.0мА = 26 Ом. Таким образом, AV = –Rнагр/rЭ = –4700/26 = -181. В техническом описании pn2222 указано CКБ = 8 пФ. Емкость Миллера равна CКБ(1 – AV). Коэффициент усиления AV = -181, отрицательное значение, так как это инвертирующий усилитель. CМиллер = CКБ(1 – AV) = 8пФ(1 – (–181)) = 1456пФ.

Схема с общей базой не зависит от эффекта Миллера, поскольку заземленная база экранирует сигнал коллектора от подачи обратно на эмиттерный вход. Таким образом, усилитель с общей базой обладает более высокочастотной характеристикой. При этом по-прежнему желательно использование каскада с общим эмиттером для получения относительно высокого входного сопротивления. Цель состоит в том, чтобы уменьшить коэффициент усиления каскада с общим эмиттером (до примерно 1), что уменьшит эффект Миллера обратной связи коллектор-база до 1 · CКБ. Суммарная емкость обратной связи коллектор-база равна емкости обратной связи 1 · CКБ плюс реальная емкость CКБ, что в итоге дает 2 · CКБ. Это дает значительное уменьшение со значения 181 · CКБ. Емкость Миллера для коэффициента усиления –2 каскада с общим эмиттером равна CМиллер = CКБ(1 – AV) = CКБ(1 – (–1)) = CКБ · 2.

Способ уменьшения коэффициента усиления схемы с общим эмиттером заключается в уменьшении сопротивления нагрузки. Коэффициент усиления по напряжению усилителя с общим эмиттером примерно равен RК/RЭ. Внутреннее сопротивление rЭ при токе эмиттера 1 мА составляет 26 Ом. Расчет rЭ смотрите выше. Нагрузка коллектора RК представляет собой сопротивление эмиттера каскада с общей базой, который является нагрузкой каскада с общим эмиттером, и это снова 26 Ом. Коэффициент усиления каскада с общим эмиттером примерно равен AV = RК/RЭ = 26/26 = 1. Емкость Миллера равна CМиллер = CКБ(1 – AV) = 8пФ(1 – (–1)) = 16пФ. Теперь мы имеем относительно высокое входное сопротивление каскада с общим эмиттером, устранив влияние эффекта Миллера, однако без усиления по напряжению. Каскад с общей базой обеспечивает высокий коэффициент усиления по напряжению, AV = –181. Коэффициент усиления по току каскодной схемы равен β для каскада с общим эмиттером и 1 для каскада с общей базой, что в итоге дает β. Таким образом, каскодная схема имеет относительно высокое входное сопротивление схемы с общим эмиттером, хорошее усиление и широкую полосу пропускания схемы с общей базой.

SPICE: для сравнения каскодной схемы и каскада с общим эмиттером

На рисунке выше показаны схемы каскодного усилителя и усилителя с общим эмиттером для сравнения в SPICE. Список соединений приведен ниже. Источник переменного напряжения V3 управляет обоими усилителями через узел 4. Резисторы смещения для этой схемы вычисляются в примере каскодной схемы в разделе «Расчеты смещения» этой главы.

Осциллограммы SPICE. Обратите внимание, что входной сигнал для наглядности умножен на 10

Список соединений SPICE для печати входных и выходных переменных напряжений.

Осциллограммы на рисунке выше показывают работу каскодного усилителя. Входной сигнал показан умноженным на 10, так чтобы он был виден совместно с выходными сигналами. Обратите внимание, что в каскодной схеме, в каскаде с общим эмиттером, сигнал Va инвертирован относительно входного сигнала. Выходные сигналы и в каскодной схеме, и в усилителе с общим эмиттером имеют большую амплитуду. Точка Va имеет смещение по постоянному напряжению примерно на 10 В, примерно посередине между 20 В и землей. Сигнал больше, чем можно было бы объяснить коэффициентом усиления каскада с общим эмиттером, равным 1. Он в три раза больше, чем ожидалось.

Читайте также:  Как самому сделать выжигатель по дереву

Сравнение ширины полосы пропускания у каскодного усилителя и каскада с общим эмиттером

На рисунке выше показаны амплитудно-частотные характеристики каскодной схемы и схемы с общим эмиттером. Операторы SPICE, отвечающие за AC анализ, извлечены из листинга:

Обратите внимание, что " ac 1 " является обязательным в строке оператора V3. Каскодный усилитель имеет слегка улучшенный коэффициент усиления в середине диапазона. Тем не менее, нам, в основном, интересна ширина полосы пропускания, измеренная на уровне -3 дБ по сравнению с усилением в середине полосы для каждого усилителя. Эти точки показаны на рисунке выше вертикальными сплошными линиями. Также можно распечатать интересующие данные из nutmeg на экран (команда в первой строке):

Индекс 22 выдает коэффициент усиления в дБ в середине полосы пропускания: для каскодной схемы vm(3) = 47.5 дБ, для схемы с общим эмиттером vm(13) = 45.4 дБ. Из многих напечатанных линий индекс 33 был ближайшим к тому, чтобы он был на 3 дБ ниже 45.4 дБ и равен 42.0 дБ для схемы с общим эмиттером. Соответствующая частота индекса 33 составляет примерно 2 МГц, это ширина полосы пропускания схемы с общим эмиттером. Индекс 37 с vm(3) = 44.6 дБ примерно на 3 дБ ниже 47.5 дБ. Соответствующая частота индекса 37 составляет 5 МГц, это ширина полосы пропускания каскодной схемы. Таким образом, каскодный усилитель имеет более широкую полосу пропускания. Мы не смотрим на уменьшение усиления на нижних частотах. Оно связано с конденсаторами, и его можно устранить, заменив конденсаторы на более большие. Ширина полосы в 5 МГц в нашем примере каскодного усилителя хотя и лучше, чем у схемы с общим эмиттером, не показательна для RF (РЧ, радиочастотного) усилителя. Для повышения верхней частоты полосы пропускания следует использовать пару РЧ или СВЧ транзисторов с более низкими межэлектродными емкостями. До изобретения радиочастотного MOSFET транзистора с двойным затвором каскодный усилитель на биполярных транзисторах можно было найти в дециметровых (UHF) ТВ приемниках.

Каскодное включение полевого и биполярного транзисторов позволяет получить сочетание лучших свойств тех и других транзисторов.

На рис. 5.1 — 5.6 приведены отобранные практикой схемы соединения полевого и биполярного транзисторов, систематизированные в сборнике схем Б.И. Горошкова. Они имеют высокое, характерное для полевых транзисторов, входное сопротивление и низкое, присущее биполярным транзисторам, выходное.

Коэффициент усиления (передачи) таких каскадов можно вычислить по приводимым в главе 3 формулам. В этих формулах Куи — коэффициент усиления каскада по напряжению; h213 (или Р) — коэффициент передачи биполярного транзистора по току; S — крутизна характеристики полевого транзистора (мА/В) RH — сопротивление нагрузки (кОм).

Ориентировочные, численные значения h2-|3 и S можно найти в справочниках или паспортных данных (см. Приложение); реальные же значения могут заметно отличаться от «теоретических».

Как следует из сопоставления формул, каскады усиления (рис. 5.1, 5.3, 5.5, 5.6) имеют коэффициент усиления (передачи), равный произведению отдельно взятых коэффициентов передачи транзисторов, входящих в каскад. Каскады (рис. 5.2, 5.4) имеют коэффициент передачи, практически равный единице.

Каскодное (двух, трех или более «этажное» включение полевых и/или биполярных транзисторов) позволяет простыми средствами добиться высокого коэффициента передачи, ослабить проникновение входного сигнала на выход усилителя, упростить схему в целом, повысить устойчивость ее работы, повысить максимальное значение напряжения питания и амплитуду выходного сигнала, соответственно. «Двухэтажные» каскодные усилители требуют удвоения напряжения питания по сравнению с обычным включением транзисторов, при этом ток, потребляемый схемой, снижается вдвое.

Рис. 5.7. Эквивалент К140УД7

На рис. 5.7 показана схема, позволяющая проимитиро-вать довольно сложную по внутренней структуре аналоговую микросхему низкочастотного усилителя К140УД7 [Р 1/79-44]. Полноценной такую замену считать, разумеется, не следует (особенно в части коэффициента усиления). Однако использование эквивалента микросхемы, выполненного на дискретных элементах, в ряде случаев может быть оправдано. Резистор R2 подбирают до установления на выходе аналога микросхемы нулевого напряжения при питании устройства от двухпо-лярного источника.

Читайте также:  Как утеплить погреб пенопластом

Каскодные схемы широкополосных , включенных последовательно по постоянному току, приведены на рис. 5.8 — 5.16 [А.Г. Ми-лехин, Р 9/72-38]. В качестве динамической нагрузки полевого транзистора VT1 используется активный элемент — полевой или биполярный транзистор VT2, внутреннее сопротивление которого зависит от амплитуды сигнала на стоке транзистора VT1.

Транзистор VT1 включен по схеме с общим истоком, транзистор VT2 — с общим стоком (рис. 5.8 — 5.10). При таком сочетании первый каскад имеет коэффициент усиления по напряжению близкий к единице, благодаря чему он обладает большим запасом устойчивости. Кроме того, схема с общим истоком обладает значительным коэффициентом усиления по мощности, что способствует снижению шума двухкаскадного усилителя. Второй каскад, обладая большим коэффициентом устойчивого усиления, позволяет получить необходимое усиление по напряжению.

Наиболее простая схема (рис. 5.8) содержит всего 5 элементов, включая переходные конденсаторы. Несколько усложненный вариант усилителя (с включением в цепь истока каждого полевого транзистора сопротивления смещения) показан на рис. 5.9.

Для расширения частотного диапазона входного сигнала в качестве сопротивления в цепи истока верхнего (по схеме на рис. 5.10) полевого транзистора дополнительно может быть включен высокочастотный дроссель — элемент, реактивное сопротивление которого возрастает с ростом частоты.

Коэффициент усиления каскада в области низких частот (рис. 5.8) при использовании полевых транзисторов типа КП103Ж достигает 40 дБ при низком уровне шумов.

Коэффициент усиления по напряжению в диапазоне низких частот (от 10 Гц до 10 кГц) каскада на рис. 5.9 составляет 130 [А.Г. Милехин]. Максимальный выходной сигнал при напряжении питания 9 В может доходить до 1,4 В. Схема на рис. 5.11 имеет динамическую нагрузку полевого транзистора, в качестве которой применен биполярный транзистор.

Основные характеристики схемы (рис. 5.11) соответствуют аналогичным для схемы (рис. 5.9), коэффициент усиления по напряжению незначительно возрастает, но в целом схема заметно усложняется.

На рис. 5.12 показан пример практической реализации усилительного каскада, выполненного на основе полевого и биполярного транзисторов (см. также рис. 5.1).

В соответствии со сведениями, систематизированными в литературе [Р 9/72-38], можно привести сводную таблицу 5.1, характеризующую свойства каскодных усилителей в сопоставимых условиях измерения (для транзисторов КП103М), см. рис. 5.8 — 5.10, 5.13 — 5.16.

Апериодический и резонансные каскады усиления с кас-кодным включением транзисторов показаны на рис. 5.17 — 5.19 [Р 5/75-54].

Резонансный (рис. 5.18) в области частот до 500 кГц имеет устойчивое и не зависящее от частоты усиление по напряжению (порядка 20. 25 раз) при использовании относительно низкочастотных транзисторов типа КП103И. При их замене более высокочастотными (типа КПЗОЗ и сменой полярности источника питания) схема усилителя может работать для усиления сигналов в диапазонах коротких и средних волн.

Вторая схема каскодного резонансного усилителя (рис. 5.19) позволяет получить на частоте 12,5 МГц коэффициент усиления до 18.. .20. Для более низких частот (в диапазоне длинных и средних волн) коэффициент усиления по напряжению возрастает до 100 и выше. От источника питания усилитель потребляет ток 3. 4 мА.

На основе схем усилителей, приведенных на рис. 5.18, 5.19, могут быть созданы узкополосные высокочастотные усилители с одновременно перестраиваемыми на входе и выходе устройства идентичными колебательными контурами или фильтрами.

Интересным схемотехническим решением, позволяющим заметно выиграть в соотношении сигнал/шум, создав таким образом сверхмалошумящие усилители, является параллельное включение в нижнем плече схемы нескольких однотипных транзисторов [ПТЭ 1/78-88]. Общий коэффициент усиления транзисторов суммируется. В то же время уровень шумов возрастает только пропорционально корню квадратному из числа параллельно включенных транзисторов. В итоге, если включить параллельно 4 транзистора, соотношение сигнал/шум улучшится в 2 раза; при девяти транзисторах — в 3 раза и т.д.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Комментарии запрещены.

Присоединяйся