Катушка в магнитном поле постоянного магнита

После рассказа о применении конденсаторов логично было бы рассказать еще об одном представителе пассивных радиоэлементов – катушках индуктивности. Но рассказ о них придется начать издалека, вспомнить о существовании магнитного поля, ведь именно магнитное поле окружает и пронизывает катушки, именно в магнитном поле, чаще всего переменном, катушки и работают. Короче, это их среда обитания.

Магнетизм, как свойство вещества

Магнетизм является одним из важнейших свойств вещества, так же как, например, масса или электрическое поле. Явления магнетизма, впрочем, как и электричества, были известны давно, вот только тогдашняя наука не могла объяснить сути этих явлений. Непонятное явление получило название «магнетизм» по имени города Магнезия, что был когда-то в Малой Азии. Именно из руды, добываемой поблизости, и получались постоянные магниты.

Но постоянные магниты в рамках данной статьи не особо интересны. Коль скоро было обещано рассказать о катушках индуктивности, то речь пойдет, скорее всего, об электромагнетизме, ведь далеко не секрет, что даже вокруг провода с током существует магнитное поле.

В современных условиях исследовать явление магнетизма на начальном, хотя бы уровне, достаточно легко. Для этого надо собрать простейшую электрическую цепь из батарейки и лампочки для карманного фонаря. В качестве индикатора магнитного поля, его направления и напряженности можно воспользоваться обычным компасом.

Магнитное поле постоянного тока

Как известно, компас показывает направление на Север. Если поблизости расположить провода упомянутой выше простейшей схемы, и включить лампочку, то стрелка компаса несколько отклонится от своего нормального положения.

Подключив параллельно еще одну лампочку можно удвоить ток в цепи, отчего угол поворота стрелки несколько увеличится. Это говорит о том, что магнитное поле провода с током стало больше. Именно на таком принципе работают стрелочные измерительные приборы.

Если полярность включения батарейки изменить на обратную, то и стрелка компаса повернется другим концом – направление магнитного поля в проводах также изменилось по направлению. Когда схема будет отключена, стрелка компаса вновь вернется в свое законное положение. Нет тока в катушке, нет и магнитного поля.

Во всех этих опытах компас играет роль пробной магнитной стрелки, подобно тому, как исследование постоянного электрического поля производится пробным электрическим зарядом.

На основе таких простейших опытов можно сделать заключение, что магнетизм появляется на свет благодаря электрическому току: чем этот ток сильней, тем сильнее магнитные свойства проводника. А откуда же тогда берется магнитное поле у постоянных магнитов, ведь к ним батарейку с проводами никто не подключал?

Фундаментальными научными исследованиями доказано, что и постоянный магнетизм основан на электрических явлениях: каждый электрон находится в собственном электрическом поле и обладает элементарными магнитными свойствами. Только в большинстве веществ эти свойства взаимно нейтрализуются, а у некоторых почему-то складываются в один большой магнит.

Конечно, на самом деле все не так примитивно и просто, но, в общем, даже постоянные магниты имеют свои чудесные свойства за счет движения электрических зарядов.

А какие они магнитные линии?

Магнитные линии можно увидеть визуально. В школьном опыте на уроках физики для этого на лист картона насыпаются металлические опилки, а внизу помещается постоянный магнит. Слегка постукивая по листу картона можно добиться картинки, показанной на рисунке 1.

Нетрудно видеть, что магнитные силовые линии выходят из северного полюса и входят в южный, при этом не разрываясь. Конечно, можно сказать, что как раз, наоборот, из южного в северный, но так уж принято, поэтому из северного в южный. Точно так же, как когда-то приняли направление тока от плюса к минусу.

Если вместо постоянного магнита сквозь картонку пропустить провод с током, то металлические опилки покажут его, проводника, магнитное поле. Это магнитное поле имеет вид концентрических круговых линий.

Для исследования магнитного поля можно обойтись и без опилок. Достаточно вокруг проводника с током перемещать пробную магнитную стрелку, чтобы увидеть, что силовые магнитные линии и впрямь представляют собой замкнутые концентрические окружности. Если перемещать пробную стрелку в сторону, куда ее отклоняет магнитное поле, то непременно вернемся в ту же точку, откуда начали движение. Аналогично, как пешком вокруг Земли: если идти никуда не сворачивая, то рано или поздно придешь на то же место.

Правило буравчика

Направление магнитного поля проводника с током определяется по правилу буравчика, – инструмента для сверления отверстий в дереве. Тут все очень просто: буравчик надо вращать так, чтобы его поступательное движение совпадало с направлением тока в проводе, тогда направление вращения рукоятки покажет, куда направлено магнитное поле.

«Ток идет от нас» – крестик в середине круга это оперение стрелы, летящей за плоскость рисунка, а где «Ток идет к нам», показан наконечник стрелы, летящей из-за плоскости листа. По крайней мере, такое объяснение этих обозначений давалось на уроках физики в школе.

Взаимодействие магнитных полей двух проводников с током

Если к каждому проводнику применить правило буравчика, то определив направление магнитного поля в каждом проводнике, можно с уверенностью сказать, что проводники с одинаковым направлением тока притягиваются, а их магнитное поля складываются. Проводники с токами разного направления взаимно отталкиваются, магнитное их поле компенсируется.

Читайте также:  Как сделать лебёдку на машину

Катушка индуктивности

Если проводник с током выполнить в виде кольца (витка), то у него появляются свои магнитные полюса, северный и южный. Но магнитное поле одного витка, как правило, невелико. Гораздо лучших результатов можно добиться, намотав провод в виде катушки. Такую деталь называют катушкой индуктивности или просто индуктивностью. В этом случае магнитные поля отдельных витков складываются, взаимно усиливая друг друга.

На рисунке 5 показано, каким образом можно получить сумму магнитных полей катушки. Вроде бы можно запитать каждый виток от своего источника, как показано на рис. 5.2, но проще соединить витки последовательно (просто намотать одним проводом).

Совершенно очевидно, что чем большее количество витков у катушки, тем сильнее ее магнитное поле. Также магнитное поле зависит и от тока через катушку. Поэтому вполне правомерно оценивать способность катушки создавать магнитное поле просто умножив ток через катушку (А) на количество витков (W). Такая величина так и называется ампер – витки.

Катушка с сердечником

Магнитное поле, создаваемое катушкой, можно значительно увеличить, если внутрь катушки ввести сердечник из ферромагнитного материала. На рисунке 6 показана таблица с относительной магнитной проницаемостью различных веществ.

Например, трансформаторная сталь позволит сделать магнитное поле примерно в 7..7,5 тысяч раз сильней, чем при отсутствии сердечника. Другими словами, внутри сердечника магнитное поле будет вращать магнитную стрелку в 7000 раз сильнее (такое можно только представить мысленно).

В верхней части таблицы разместились парамагнитные и диамагнитные вещества. Относительная магнитная проницаемость µ указана относительно вакуума. Следовательно, парамагнитные вещества немного усиливают магнитное поле, а диамагнитные чуть-чуть ослабляют. В общем, особого влияния на магнитное поле эти вещества не оказывают. Хотя, на высоких частотах для настройки контуров иногда применяются латунные или алюминиевые сердечники.

В нижней части таблицы разместились ферромагнитные вещества, которые значительно усиливают магнитное поле катушки с током. Так, например, сердечник из трансформаторной стали сделает магнитное поле сильнее ровно в 7500 раз.

Чем и как измерить магнитное поле

Когда понадобились единицы для измерения электрических величин, то в качестве эталона взяли заряд электрона. Из заряда электрона была сформирована вполне реальная и даже ощутимая единица – кулон, а на ее основе все оказалось просто: ампер, вольт, ом, джоуль, ватт, фарада.

А что можно взять в качестве отправной точки для измерения магнитных полей? Каким-то образом привязать к магнитному полю электрона весьма проблематично. Поэтому в качестве единицы измерения в магнетизме принят проводник, по которому протекает постоянный ток в 1 А.

Характеристики магнитного поля

Основной такой характеристикой является напряженность (H). Она показывает, с какой силой действует магнитное поле на упомянутый выше пробный проводник, если дело происходит в вакууме. Вакуум предназначается для исключения влияния среды, поэтому эту характеристику – напряженность считают абсолютно чистой. За единицу напряженности принят ампер на метр (а/м). Такая напряженность появляется на расстоянии 16см от проводника, по которому идет ток 1А.

Напряженность поля говорит лишь о теоретической способности магнитного поля. Реальную же способность к действию отражает другая величина магнитная индукция (B). Именно она показывает реальную силу, с которой магнитное поле действует на проводник с током в 1А.

Если в проводнике длиной 1м протекает ток 1А, и он выталкивается (притягивается) с силой 1Н (102Г), то говорят, что величина магнитной индукции в данной точке ровно 1 тесла.

Магнитная индукция величина векторная, кроме численного значения она имеет еще и направление, которое всегда совпадает с направлением пробной магнитной стрелки в исследуемом магнитном поле.

Единицей магнитной индукции является тесла (ТЛ), хотя на практике часто пользуются более мелкой единицей Гаусс: 1ТЛ = 10 000Гс. Много это или мало? Магнитное поле вблизи мощного магнита может достигать нескольких Тл, около магнитной стрелки компаса не более 100Гс, магнитное поле Земли вблизи поверхности примерно 0,01Гс и даже ниже.

Магнитный поток

Вектор магнитной индукции B характеризует магнитное поле лишь в одной точке пространства. Чтобы оценить действие магнитного поля в некотором пространстве вводится еще такое понятие, как магнитный поток (Φ).

По сути дела он представляет собой количество линий магнитной индукции, проходящих через данное пространство, через какую-то площадь: Φ=B*S*cosα. Эту картину можно представить в виде дождевых капель: одна линия это одна капля (B), а все вместе это магнитный поток Φ. Именно так в общий поток соединяются силовые магнитные линии отдельных витков катушки.

В системе СИ за единицу магнитного потока принят Вебер (Вб), такой поток возникает, когда индукция в 1 Тл действует на площади 1 кв.м.

Магнитная цепь

Магнитный поток в различных устройствах (двигатели, трансформаторы и т.п.), как правило, проходит определенным путем, называемым магнитной цепью или просто магнитопроводом. Если магнитная цепь замкнута (сердечник кольцевого трансформатора), то ее сопротивление невелико, магнитный поток проходит беспрепятственно, концентрируется внутри сердечника. На рисунке ниже показаны примеры катушек с замкнутым и разомкнутым магнитопроводами.

Читайте также:  Как сделать миниган из дерева

Сопротивление магнитной цепи

Но сердечник можно распилить и вытащить из него кусочек, сделать магнитный зазор. Это увеличит общее магнитное сопротивление цепи, следовательно, уменьшит магнитный поток, а в целом уменьшится индукция во всем сердечнике. Это все равно как в электрическую цепь последовательно запаять большое сопротивление.

Если получившийся зазор перекрыть куском стали, то получится, что параллельно зазору подключили дополнительный участок с меньшим магнитным сопротивлением, что и восстановит нарушенный магнитный поток. Это очень напоминает шунт в электрических цепях. Кстати, для магнитной цепи также существует закон, который называют законом Ома для магнитной цепи.

Через магнитный шунт пойдет основная часть магнитного потока. Именно это явление и используется в магнитной записи звуковых или видеосигналов: ферромагнитный слой ленты перекрывает зазор в сердечнике магнитных головок, и весь магнитный поток замыкается через ленту.

Направление магнитного потока, создаваемого катушкой, можно определить, воспользовавшись правилом правой руки: если четыре вытянутых пальца указывают направление тока в катушке, то большой палец покажет направление магнитных линий, как показано на рисунке 13.

Принято считать, что магнитные линии выходят из северного полюса и заходят в южный. Поэтому большой палец в данном случае указывает расположение южного полюса. Проверить так ли это, можно опять же с помощью стрелки компаса.

Как работает электродвигатель

Известно, что электричество может создавать свет и тепло, участвовать в электрохимических процессах. После знакомства с основами магнетизма можно рассказать о том, как работают электродвигатели.

Электродвигатели могут быть самой разной конструкции, мощности и принципа действия: например постоянного и переменного тока, шаговые или коллекторные. Но при всем многообразии конструкций принцип действия основан на взаимодействии магнитных полей ротора и статора.

Для получения этих магнитных полей по обмоткам пропускают ток. Чем больше ток, и чем выше магнитная индукция внешнего магнитного поля, тем мощнее двигатель. Для усиления этого поля используются магнитопроводы, поэтому в электрических двигателях так много стальных деталей. В некоторых моделях двигателей постоянного тока используются постоянные магниты.

Здесь, можно сказать, все понятно и просто: пропустили по проводу ток, получили магнитное поле. Взаимодействие с другим магнитным полем заставляет этот проводник двигаться, да еще и совершать механическую работу.

Направление вращения можно определить по правилу левой руки. Если четыре вытянутых пальца показывают направление тока в проводнике, а магнитные линии входят в ладонь, то отогнутый большой палец укажет направление выталкивания проводника в магнитном поле.

Почему возникает магнитное поле

Магнитные свойства некоторых веществ, позволяющие притягивать металлические предметы, были известны с давних времен. Но к пониманию сути этого явления удалось приблизиться только в начале XIX века. По аналогии с электрическими зарядами, были попытки объяснить магнитные эффекты с помощью неких магнитных зарядов (диполей). В 1820 г. датский физик Ханс Эрстед обнаружил, что магнитная стрелка отклоняется при пропускании электрического тока через проводник, находящийся около нее.

Тогда же французский исследователь Андре Ампер установил, что два проводника, расположенные параллельно друг другу, вызывают взаимное притяжение при пропускании через них электрического тока в одном направлении и отталкивание, если токи направлены в разные стороны.

Рис. 1. Опыт Ампера с проводами с током. Стрелка компаса вблизи провода с током

На основании этих наблюдений Ампер пришел к выводу, что взаимодействие тока со стрелкой, притяжение (и отталкивание) проводов и постоянных магнитов между собой можно объяснить, если предположить, что магнитное поле создается движущимися электрическими зарядами. Дополнительно Ампер выдвинул смелую гипотезу, согласно которой внутри вещества существуют незатухающие молекулярные токи, которые и являются причиной возникновения постоянного магнитного поля. Тогда все магнитные явления можно объяснить взаимодействием движущихся электрических зарядов, и никаких особенных магнитных зарядов не существует.

Математическую модель (теорию), с помощью которой стало возможным рассчитывать величину магнитного поля и силу взаимодействия, разработал английский физик Джеймс Максвелл. Из уравнений Максвелла, объединивших электрические и магнитные явления, следовало, что:

  • Магнитное поле возникает только в результате движения электрических зарядов;
  • Постоянное магнитное поле существует у природных магнитных тел, но и в этом случае причиной возникновения поля является непрерывное движение молекулярных токов (вихрей) в массе вещества;
  • Магнитное поле можно создать еще с помощью переменного электрического поля, но это тема будет рассмотрена в следующих наших статьях.

Магнитное поле катушки с током

Металлический провод, намотанный кольцами на любой цилиндрический стержень (деревянный, пластмассовый и т.п.) — это и есть электромагнитная катушка. Провод должен быть изолированным, то есть покрыт каким-либо изолятором (лаком или пластиковой оплеткой) во избежание замыкания соседних витков. В результате протекания тока магнитные поля всех витков складываются и получается, что суммарное магнитное поле катушки с током идентично (полностью похоже) магнитному полю постоянного магнита.

Рис. 2. Магнитное поле катушки и постоянного магнита.

Внутри катушки магнитное поле будет однородное, как в постоянном магните. Снаружи магнитные линии поля катушки с током можно обнаружить с помощью мелких металлических опилок. Линии магнитного поля замкнуты. По аналогии с магнитной стрелкой компаса, катушка с током имеет два полюса — южный и северный. Силовые линии выходят из северного полюса и заканчиваются в южном.

Читайте также:  Канализация зимой на даче

Для катушек с током существуют дополнительные, отдельные названия, которые используют в зависимости от области применения:

  • Катушка индуктивности, или просто — индуктивность. Термин используется в радиотехнике;
  • Дроссель (drossel — регулятор, ограничитель). Используется в электротехнике;
  • Соленоид. Это составное слово происходит от двух греческих слов: solen — канал, труба и eidos — подобный). Так называют специальные катушки с сердечниками из специальных магнитных сплавов (ферромагнетиков), которые используют в качестве электромеханических механизмов. Например, в автомобильных стартерах втягивающее реле — это соленоид.

Рис. 3. Катушки индуктивности, дроссель, соленоид

Энергия магнитного поля

В катушке с током запасается энергия от источника электропитания (батареи, аккумулятора), которая тем больше, чем больше ток I и величина L, которая называется индуктивностью. Энергия магнитного поля катушки с током W вычисляется с помощью формулы:

Эта формула напоминает формулу для кинетической энергии тела. Индуктивность аналогична массе тела, а сила тока аналогична скорости тела. Магнитная энергия пропорциональна квадрату силы тока, как кинетическая энергия пропорциональна квадрату скорости.

Для расчета величины индуктивности катушки существует следующая формула:

N — число витков катушки;

S — площадь поперечного сечения катушки;

lк — длина катушки;

μ — магнитная проницаемость материала сердечника — справочная величина. Сердечник представляет собой металлический стержень, помещенный внутрь катушки. Он позволяет значительно увеличивать величину магнитного поля.

Что мы узнали?

Итак, мы узнали, что магнитное поле возникает только в результате движения электрических зарядов. Магнитное поле катушки с током похоже на магнитное поле постоянного магнита. Энергию магнитного поля катушки можно рассчитать, зная силу тока I и индуктивность L.

Новый сверхмощный магнит легко поместится в дамской сумочке. Учёные уже решают, где можно будет использовать такое чудо.

Инженеры Национальной лаборатории сильных магнитных полей в США (MagLab) сконструировали очень мощный магнит. При этом он практически незаметен: источник сильнейшего магнитного поля упакован в катушку, которая поместится даже в небольшой сумочке.

Сотрудники лаборатории нашли способ создавать и использовать электромагниты, которые сильнее, меньше и универсальнее тех, что были сконструированы когда-либо прежде.

"Мы буквально открываем дверь в новый мир. Из-за своей компактности эта технология способна полностью изменить наши представления об области применения сильных магнитных полей", – объясняет автор уникальной разработки Сынгён Хан (Seungyong Hahn) в пресс-релизе университета.

Новый магнит производит магнитное поле с индукцией в рекордных 45,5 Тесла. Для сравнения, стандартный магнит аппарата магнитно-резонансной томографии (МРТ) создаёт поле в 2-3 Тесла. Кстати, прежний мировой рекордсмен, также созданный в Национальной лаборатории сильных магнитных полей США, был 35-тонным гигантом, генерирующим магнитное поле в 45 Тесла.

В процессе испытаний компактное чудо весом 390 граммов быстро продемонстрировало своё превосходство над предшественником.

Но как же может нечто столь маленького размера генерировать такое мощное магнитное поле? Всё благодаря новаторской конструкции и использованию нового многообещающего проводника, сообщают разработчики.

При создании магнита учёные использовали сверхпроводящий материал. Но не обычный, а специально созданный. Этот особый сплав на основе оксида бария, меди и редкоземельных элементов специалисты коротко именуют REBCO.

Он может выдерживать в два раза большую силу тока по сравнению с обычным сверхпроводником на основе ниобия (а сила протекающего тока определяет и силу магнитного поля). Важным нововведением стало также использование очень тонких (не толще листа бумаги) проводов в виде лент.

Другим ключевым моментом в создании маленького рекордсмена является отсутствие изоляции. Обычные современные электромагниты содержат изолирующий элемент между проводящими слоями, чтобы направлять ток по наиболее эффективному пути. Однако это добавляет вес и объём конструкции.

Отсутствие изоляции не только позволило получить более компактный и изящный прибор, но и помогло избежать возможных отказов конструкции. Они случаются при повреждениях или несовершенствах проводника.

В этом случае течение тока по оптимальному пути прерывается, материал начинает нагреваться и терять свои сверхпроводящие свойства. Но если изоляции в конструкции нет в принципе, то ток сможет протекать в обход проблемного участка, предотвращая развитие отказов.

Чтобы оценить важность представленной разработки, достаточно упомянуть, что сильные магнитные поля находят применение в самых разных областях: медицине (МРТ), фармакологии (ядерный магнитный резонанс), ускорении частиц (как в Большом адронном коллайдере), термоядерных реакторах, а также других специфических областях науки и промышленности.

Инженеры уже запланировали дальнейшие исследования. Они будут искать способы выявления и устранения возможных проблем. Учёные также изучают потенциальные применения своей удивительной разработки с использованием сверхпроводящих магнитов будущего, над созданием которых они активно трудятся.

По словам разработчиков, основная фундаментальная проблема материала REBCO в том, что такой тонкий проводник неизбежно будет иметь дефекты. Но их влияние на магниты будущего пока не изучены. Тем не менее, даже несмотря на все сложности, с которыми ещё предстоит справиться, учёные весьма воодушевлены своим достижением.

Научная статья, посвящённая изобретению американских исследователей и инженеров, опубликована в издании Nature.

Комментарии запрещены.

Присоединяйся