Клеммы на схеме соединения

Содержание

Михаил Чуйков
Ведущий специалист, ООО «Розмысел»
Светлана Капитанова
Специалист по маркетингу, ООО «Розмысел»

Большинству проектировщиков, разрабатывающих электрические системы управления, знакомы неприятные хлопоты при использовании в проекте технологических элементов — клеммных блоков и разъемов. Слишком много времени уходит на их создание и поддержку актуальности при оперативной разработке электрооборудования. Переход на электронное проектирование позволяет автоматизировать их создание, ускорив процесс проектирования и уменьшив количество ошибок.

В процессе своего развития клеммные блоки (клеммники, клеммные колодки, ряды зажимов) стали наборными: на монтажной шине устанавливается переменное количество клемм. Для экономии пространства клеммы стали многоярусными, при этом изолированные друг от друга ярусы должны иметь свой уникальный номер. Кроме того, в клеммнике, наряду с обычными проходными, могут использоваться и специальные клеммы, выполняющие специфичные функции: измерительные клеммы, гальванические развязки, реле, индикаторы, переключатели и многое другое.

Однако в проектной документации клеммники зачастую оформляются традиционно: клеммный блок по­прежнему имеет только одно обозначение (типа XT1) и лишь для специальных клемм допускается использование дополнительных обозначений (например, для реле — XT1:K1).

Таким образом, пользователю, с одной стороны, необходимо свести к минимуму трудоемкость формирования клеммника, а с другой — обеспечить выпуск проектной документации в строгом соответствии с принятыми стандартами.

Рассмотрим основные возможности работы с клеммными блоками и разъемами в системе проектирования электрооборудования ElectriCS Pro 7.

Гибкость проектирования

При работе с клеммными блоками на разных стадиях создания проекта можно использовать несколько технологий:

  • формирование состава клеммника вручную применяется, когда проектировщик задал определенное количество клемм, задействованных в клеммнике. Подключение клеммника к электрическим связям осуществляется в принципиальной схеме. Эта традиционная технология довольно трудоемка;
  • автоматическое формирование клеммника на этапе разработки принципиальной схемы — клеммник создается на выходе из шкафа, а количество клемм вычисляется программой по количеству выходящих из шкафа электрических связей. При использовании данной технологии создание клеммника занимает небольшое время, а возможность появления ошибок сводится к минимуму. Применяется в проектах, где разрабатывается только принципиальная схема, а монтажные схемы (соединений и подключений) отсутствуют;
  • автоматическое формирование клеммника на этапе разработки схемы соединений или подключений — эта технология отличается от предыдущей тем, что применяется после трассировки электрических связей на проводники; клеммник автоматически подключается к выходящим из шкафа проводникам и кабелям.

Следует отметить, что при автоматическом формировании клеммного блока отображение элементов клеммника на принципиальной схеме не является обязательным.

Выбор технологии работы с клеммником зависит от принятого пользователем способа проектирования, стандартов оформления документации, степени детализации проектируемого объекта.

Окно Редактора клеммного блока. Присутствуют клеммы двух видов: первая клемма — двухъярусная, остальные — одноярусные. Для двухъярусной клеммы каждый ярус имеет свой номер. Для объединения соседних клемм использованы две перемычки. В нижней части окна отображен состав клеммного блока. Электрические связи показаны синим цветом, провода — желтым

Редактор клеммного блока

Основным инструментом при работе с клеммниками является Редактор клеммного блока, который позволяет создавать наборные клеммники как в ручном, так и в автоматизированном режиме, работать с многоярусными клеммами, использовать в составе клеммного блока специальные клеммы с активными элементами, разделять и объединять клеммные блоки.

Дополнительные функции Редактора клеммного блока:

  • нумерация клемм: по порядку возрастания, вручную, по номерам подходящих к клемме линий связи;
  • соединение клемм внешними перемычками, которые могут являться как готовыми изделиями типа «мостик», так и обычными проводами;
  • подключение на одну клемму электрических связей с разными номерами, но одного потенциала;
  • переподключение проводов с клеммы на клемму, с контакта на контакт.

Клеммник после автоматического подключения к электрическим связям. Использованы двухъярусные проходные клеммы. На закладке электрических связей включен фильтр, показывающий уходящие из оболочки электрические связи

Клеммник после автоматической вставки на провода. Использованы одноярусные проходные клеммы. Проводники обозначены желтым цветом. Пунктир показывает, что клеммники являются проходными

Автоматическое формирование клеммника на этапе разработки принципиальной схемы

По выходящим из шкафа электрическим связям создается клеммный блок с необходимым количеством проходных клемм. Пользователю достаточно лишь указать в базе изделий тип используемых клемм. При автоматическом подсчете клемм также учитываются изолированные уровни в выбранных клеммах.

Читайте также:  Кирпич для тротуарной дорожки

Автоматическое формирование клеммника на этапе разработки схемы соединений или подключений

Данная операция применяется на этапе проектирования схемы соединений (подключений) и является наиболее удобной при работе с клеммниками. Пользователь указывает в проекте шкаф, в который нужно вставить клеммник, и выбирает из базы изделий тип клеммы. Автоматическое формирование клеммника осуществляется с учетом количества проводов и жил кабелей, выходящих из шкафа.

Клеммник на принципиальной электрической схеме. Одно УГО отображает несколько реальных контактов на клемме

Клеммник на схеме соединений. Клеммы отображаются с подключенными проводниками

Отображение клеммных блоков на принципиальных схемах

Чаще всего на принципиальной схеме клеммник отображается разнесенным способом. Каждая клемма представлена в виде условно­графического обозначения (УГО) — символа Æ, который заменяет собой несколько реальных контактов.

Отображение клеммных блоков на схемах соединений (подключений)

Для отображения клеммного блока на монтажных схемах используется динамическое УГО. Диалог вставки УГО позволяет размещать клеммный блок на схеме частями. Проводники отрисовываются автоматически, на конце проводника указывается адрес его подключения.

Генерация отчета «Ряд зажимов»

Для генерации табличного документа типа «Ряд зажимов» используется Мастер отчетов. В отчет выводятся клеммные блоки по выбранному шкафу. Мастер отчетов в ElectriCS Pro 7 позволяет разрабатывать собственные формы сопроводительной документации для схем.

Отчет «Ряд зажимов»

Применение специальных типов клемм

Система ElectriCS Pro позволяет использовать в составе клеммного блока, наряду с обычными проходными клеммами, клеммы специального назначения, например измерительные клеммы, гальванические развязки, реле, индикаторы, переключатели и т.д. Особенностью этих элементов является поддержка дополнительного обозначения. Например, провод, идущий на такую специальную клемму, будет иметь в адресе подключения — XT1:K1:21.

Использование в клеммнике специальных клемм (реле)

Разделение и «склеивание» клеммных блоков

В процессе проектирования может оказаться, что клеммник получился слишком длинным и его необходимо разделить на два клеммника. В Редакторе клеммного блока указываются клеммы, подлежащие переносу в другой клеммник, и выполняется соответствующая команда. Существует и обратная операция — соединение двух клеммных блоков в один. При переносе из одного клеммника в другой клеммы сохраняют маркировку, тип и соединения проводами.

Инструмент автоматической вставки разъема

ElectriCS Pro поддерживает работу с любыми видами промышленных разъемов. Для удобства создания разъемов используется инструмент автоматической вставки разъема на провода — Разрезка проводов разъемом. Для создания разъема достаточно выбрать в базе изделий его тип и указать «разрезаемые» проводники.

Инструмент автоматической вставки разъема на провода

Заключение

В системе ElectriCS Pro 7 работа с такими технологическими элементами, как клеммные блоки и разъемы, максимально автоматизирована. Достаточно выбрать провода и применить команду их «разрезки» клеммным блоком или разъемом. Если стандарты проектирования не предусматривают обязательное размещение данных технологических элементов на принципиальной схеме, то размещать их необязательно. Однако они, естественно, будут учитываться на монтажных документах — схемах подключений, соединений и в табличных отчетах.

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТа Краткое описание
2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68 Требования к размерам отображения элементов в графическом виде.
21.614 88 Принятые нормы для планов электрооборудования и проводки.
2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

Читайте также:  Какие бывают угловые мойки

  • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
  • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

Пример однолинейной схемы

  • Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов

Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.

Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.

УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.

Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D — Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

Читайте также:  Как убрать мелкую царапину с автомобиля

Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

Обозначение электродвигателей на схемах

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)

Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В — ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

Пример изображения на монтажных схемах розеток скрытой установки

Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

Обозначение выключатели скрытой установки Обозначение розеток и выключателей

Буквенные обозначения

В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

Буквенные обозначения основных элементов

К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

Клеммник имеет некоторые особенности отличные от аппаратов.

Если в свойствах электрической поверхности разрабатываемого электроизделия установлена опция Наличие клеммника на поверхности, то при формировании внешних связей все соединения с данной поверхностью будут по умолчанию проводиться автоматически через клеммник. Если данная опция в свойствах поверхности отключена, соединения будут формироваться напрямую на зажимы аппаратов.

Клеммы не отображаются на графике Схемы электрической принципиальной (Э3) по умолчанию. Устанавливаются клеммы на Э3 либо вручную при помощи команды Клемма, либо автоматически при помощи команды Расставить клеммы. , которые вызываются из панели КОМПАС-Электрик.

Спецификационные данные по клеммнику или клеммам заносятся только в Ведомость покупных изделий.
В Спецификацию и Перечень элементов данные по клеммнику пока что не заносятся – данная задача стоит на последующие версии КОМПАС-Электрик.

В КОМПАС-Электрик имеется возможность работы с 2-мя типами клеммников:
– блочного типа
(законченное изделие, с ограниченным количеством клемм),
– наборного типа, количество клемм в которых не ограничено.
Особенности работы с обоими типами клеммников рассмотрены в прикрепленном ролике.
Пока что не реализована возможность работы с моногоэтажными клеммами.

В прикрепленном ролике также рассмотрено:
– особенности при добавлении клемм и клеммников в базу данных комплектующих,
– как присвоить тип блочному клеммнику,
– как вручную присвоить тип клемме наборного клеммника (автоматически тип клемме присваивается при назначении потенциальному узлу в Свойствах линии связи соответствующей Функциональной цепи, данные по которой заполняются в Параметрах системы КОМПАС-Электрик в разделе Текущий проект Графический документ Соединители Функции цепей),
– каким образом отобразить Общий вид блочного клеммника на Схеме электрической расположения (Э7). Наборный клеммник на Э7 можно отобразить пока что только в виде контура,
– каким образом отображается УГО клеммника на Схеме электрической соединений (Э4),
– каким образом отобразить клеммник на Э4 разнесенным способом в виде нескольких раздельных частей.

Комментарии запрещены.

Присоединяйся