Когда эдс равно напряжению

Электрический ток не протекает в медном проводе по той же причине, по которой остаётся неподвижной вода в горизонтальной трубе. Если один конец трубы соединить с резервуаром таким образом, чтобы образовалась разность давлений, жидкость будет вытекать из одного конца. Аналогичным образом, для поддержания постоянного тока необходимо внешнее воздействие, перемещающее заряды. Это воздействие называется электродвижущая сила или ЭДС.

От электростатики к электрокинетике

Между концом XVIII и началом XIX века работы таких учёных, как Кулон, Лагранж и Пуассон, заложили математические основы определения электростатических величин. Прогресс в понимании электричества на этом историческом этапе очевиден. Франклин уже ввёл понятие «количество электрической субстанции», но пока ещё и он, ни его преемники не смогли его измерить.

Следуя за экспериментами Гальвани, Вольта пытался найти подтверждения того, что «гальванические жидкости» животного были одной природы со статическим электричеством. В поисках истины он обнаружил, что когда два электрода из разных металлов контактируют через электролит, оба заряжаются и остаются заряженными несмотря на замыкание контура нагрузкой. Это явление не соответствовало существующим представлениям об электричестве потому, что электростатические заряды в подобном случае должны были рекомбинировать.

Вольта ввёл новое определение силы, действующей в направлении разделения зарядов и поддержании их в таком состоянии. Он назвал её электродвижущей. Подобное объяснение описания работы батареи не вписывалось в теоретические основы физики того времени. В Кулоновской парадигме первой трети XIX века э. д. с. Вольта определялась способностью одних тел вырабатывать электричество в других.

Важнейший вклад в объяснение работы электрических цепей внёс Ом. Результаты ряда экспериментов привели его к построению теории электропроводности. Он ввёл величину «напряжение» и определил её как разность потенциалов на контактах. Подобно Фурье, который в своей теории различал количество тепла и температуру в теплопередаче, Ом создал модель по аналогии, связывающую количество перемещаемого заряда, напряжение и электропроводность. Закон Ома не противоречил накопленным знаниям об электростатическом электричестве.

Затем, благодаря Максвеллу и Фарадею, пояснительные модели тока получили новую теорию поля. Это позволило разработать связанную с полем концепцию энергии как для статических потенциалов, так и для электродвижущей силы. Основные даты эволюции понятия ЭДС:

  • 1800 г. — создание Вольтой гальванической батареи;
  • 1826 г. — Ом формулирует свой закон для полной цепи;
  • 1831 г. — обнаружение электромагнитной индукции Фарадеем.

Определение и физический смысл

Приложение некоторой разности потенциалов между двумя концами проводника создаст перетекание электронов от одного конца к другому. Но этого недостаточно для поддержания потока зарядов в проводнике. Дрейф электронов приводит к уменьшению потенциала до момента его уравновешивания (прекращение тока). Таким образом, для создания постоянного тока необходимы механизмы, непрерывно возвращающие описанную систему в первоначальную конфигурацию, то есть, препятствующие агрегации зарядов в результате их движения. Для этой цели используются специальные устройства, называемые источники питания.

В качестве иллюстрации их работы удобно рассматривать замкнутый контур из сопротивления и гальванического источника питания (батареи). Если предположить, что внутри батареи тока нет, то описанная проблема объединения зарядов остаётся неразрешённой. Но в цепи с реальным источником питания электроны перемещаются постоянно. Это происходит благодаря тому, что поток ионов протекает и внутри батареи от отрицательного электрода к положительному. Источник энергии, перемещающий эти заряды в батарее — химические реакции. Такая энергия называется электродвижущей силой.

ЭДС является характеристикой любого источника энергии, способного управлять движением электрических зарядов в цепи. В аналогии с замкнутым гидравлическим контуром работа источника э. д. с. соответствует работе насоса для создания давления воды. Поэтому значок, обозначающий эти устройства, неотличим на гидравлических и электрических схемах.

Несмотря на название, электродвижущая сила на самом деле не является силой и измеряется в вольтах. Её численное значение равно работе по перемещению заряда по замкнутой цепи. ЭДС источника выражается формулой E=A/q, в которой:

  • E — электродвижущая сила в вольтах;
  • A — работа сторонних сил по перемещению заряда в джоулях;
  • q — перемещённый заряд в кулонах.

Из этой формулы ЭДС следует, что электродвижущая сила не является свойством цепи или нагрузки, а есть способность генератора электроэнергии к разделению зарядов.

Сравнение с разностью потенциалов

Электродвижущая сила и разность потенциалов в цепи очень похожие физические величины, так как оба измеряются в вольтах и определяются работой по перемещению заряда. Одно из основных смысловых различий заключается в том, что э. д. с. (E) вызывается путём преобразования какой-либо энергии в электрическую, тогда как разность потенциалов (U) реализует электрическую энергию в другие виды. Другие различия выглядят так:

  • E передаёт энергию всей цепи. U является мерой энергии между двумя точками на схеме.
  • Е является причиной U, но не наоборот.
  • Е индуцируется в электрическом, магнитном и гравитационном поле.
  • Концепция э. д. с. применима только к электрическому полю, в то время как разность потенциалов применима к магнитным, гравитационным и электрическим полям.

Напряжение на клеммах источника питания, как правило, отличается от ЭДС источника. Это происходит из-за наличия внутреннего сопротивления источника (электролита и электродов, обмоток генератора). Связывающая разность потенциалов и ЭДС источника тока формула выглядит как U=E-Ir. В этом выражении:

  • U — напряжение на клеммах источника;
  • r — внутреннее сопротивление источника;
  • I — ток в цепи.
Читайте также:  Как сделать простую машину

Из этой формулы электродвижущей силы следует, что э. д. с. равна напряжению когда ток в цепи не течёт. Идеальный источник ЭДС создаёт разность потенциалов независимо от нагрузки (протекающего тока) и не обладает внутренним сопротивлением.

В природе не может существовать источника с бесконечной мощностью при замыкании на клеммах, как и материала с бесконечной проводимостью. Идеальный источник используется как абстрактная математическая модель.

Источники электродвижущей силы

Суть источника ЭДС заключается в преобразовании других видов энергии в электрическую с помощью сторонних сил. С точки зрения физики обеспечения э. д. с различают следующие два основных вида источников:

Первые представляют собой электрохимические источники, основанные на вовлечение в химическую реакцию процесса переноса электронов. В обычных условиях химические взаимодействия сопровождаются выделением или поглощением тепла, но существует немало реакций, в результате которых генерируется электрическая энергия.

Электрохимические процессы в большинстве случаев обратимы, поскольку энергия электрического тока может быть использована, чтобы заставить реагировать вещества между собой. Эта возможность позволяет создавать возобновляемые гальванические источники — аккумуляторы.

В генераторах тока э. д. с. создаётся другим способом. Разделение зарядов происходит с помощью явления электромагнитной индукции, которое заключается в том, что изменение величины или направления магнитного поля создаёт ЭДС. Согласно закону Фарадея, нахождение э. д. с. индукции возможно из выражения E=—dФ/dt. В этой формуле:

ЭДС индукции измеряется также в вольтах. В зависимости от того, каким способом вызываются изменения магнитного потока, различают:

  • Динамически индуцированную. Когда в стационарном магнитном поле перемещается проводник. Характерен для генераторов.
  • Статически индуцированную. Когда изменения потока возникают из-за изменений магнитного поля вокруг неподвижного проводника. Так работают трансформаторы.

Существуют также источники э. д. с, не основанные на электрохимии или магнитной индукции. К таким устройствам можно отнести полупроводниковые фотоэлементы, контактные потенциалы и пьезокристаллы. Понятие ЭДС имеет практическое применение прежде всего как параметр выбора источников питания для тех или иных целей. Чтобы получить максимальный эффект от работы устройств в цепи, нужно согласовывать их возможности и характеристики. Прежде всего внутреннее сопротивление источника ЭДС силы с характеристиками подключаемой нагрузки.

ЭДС (электродвижущая сила) – это напряжение на концах источника, когда ток отсутствует. Когда цепь закрыта и ток течет, то на концах источника есть напряжение, которое меньше, чем ЭДС. Это является следствием внутреннего сопротивления самого источника, что приводит к этому падению напряжения.

Что такое EMF?

Электрически заряженные тела могут быть получены путем отделения электронов от атомов путем потребления какой-либо другой энергии, например. механический, легкий или химический. Такое разделение существует в электрических источниках. Из-за энергетической активности в источнике генерируется ЭДС, что дополнительно вызывает избыток отрицательного заряда (отрицательный полюс) и отсутствие отрицательного заряда (положительный полюс). В электротехнике понятие ЭДС определяет работу, требуемую для разделения носителей заряда в источнике электрического тока, в котором сила, действующая на заряды на концах источника, не является прямым следствием поля. EMF определяется как количество выполненных работ (A) в преобразовании энергии и количество электричества (Q), которое проходит через генератор E = A / Q. Устройство такое же, как и для напряжения (V-вольт). Устройство, которое подает электрическую цепь и производит электродвижущую силу, называется источником электродвижущей силы или более короткой EMS (электродвижущим источником).

Что такое напряжение?

Существует разница в электрических состояниях на полюсах (клеммах) источника. На отрицательном полюсе имеется избыток электронов и нехватка электронов на положительном. В замкнутой цепи тока электроны движутся от отрицательной половины к положительной половине через проводники и приборы. Разность электрических потенциалов называется электрическим напряжением [U]. Электрическое напряжение равно количеству работ, выполняемых электрической силой при перемещении заряда из одной точки поля в другую и этой зарядке. Электрическое напряжение измеряется вольтах [V]. Измеритель напряжения называется вольтметром.

Разница между ЭДС и напряжением

Определение

Электродвижущая сила обозначает выработанное напряжение внутри электрических источников. Напряжение определяется как разность электрического потенциала между двумя точками, и эта разница на полюсах электрического источника получается путем удаления электронов из одной части источника и передачи их в другую.

выражение

Электродвижущая сила источника равна работе, которую необходимо сделать некоторой внешней силе, чтобы переместить блок заряда с одного полюса источника на другой, но через источник. Напряжение во внешней части схемы очень равно работе, которая должна выполняться электрической силой для перемещения блока заряда с одного полюса источника на другой, но через провод.

формула

Электродвижущая сила рассчитывается следующим образом: E = I * (R + r). Напряжение рассчитывается V = I * R (I – ток, R – сопротивление нагрузки, r – внутреннее сопротивление).

Эксплуатация электрических сил

Напряжение – это работа электрической (кулоновской) силы в движении заряда и является результатом сокращения энергии в круге, в то время как электродвижущая сила определяется неэлектрической (не кулоновской) операцией и отвечает за увеличение энергии в цепи.

Измерение

Разность потенциалов (напряжение) может быть измерена между любыми заданными точками схемы, в то время как электродвижущая сила существует только между двумя концами источника. Также электродвижущая сила измеряется с помощью счетчика ЭДС, а напряжение – вольтметром.

интенсивность

Электродвижущая сила всегда больше напряжения. Причина в том, что напряжение существует в нагруженном контуре, и из-за сопротивления (потери энергии) происходит падение напряжения. Величина ЭДС всегда постоянна, а интенсивность напряжений различна.

Читайте также:  Как соединить пнд трубу с металлопластиковой

индукционный

ЭДС может возникать в электрическом, гравитационном или магнитном поле, а напряжение возникает только в электрическом поле.

Господа, сегодня речь пойдет про напряжение. Все не раз слышали это слово. Все что-то про него знают.

Но что же именно такое это самое напряжение? Что представляет собой физически? Откуда оно берется? На все эти вопросы мы попытаемся сегодня дать ответ.

Для начала определимся с тем, что же такое это самое напряжение? Классическая физика дает достаточно сложное для быстрого понимания формальное определение. Оно завязано на формальном определении потенциальной энергии зарядов в поле, собственно, потенциале и их разности. Вся сия ботва подкреплена целым каскадом формул. На мой взгляд сие положение дел сильно усложняет понимание именно физики процесса возникновения напряжения и замечательная лишь с точки зрения решения академических задач, мало имеющих отношения к действительности. Сейчас мы постараемся разобраться с напряжением, что называется, на пальцах, понять физику протекающих процессов. Многим этого уже будет достаточно. Если же нет – надеюсь, после сего объяснения формулы из школьного учебника физики будут пониматься чуточку проще и быстрее.

Возьмем два электрода. Например, клеммы источника питания, или клеммы батарейки. Теперь, если мы каким-нибудь образом создадим такие условия, что на «минусовой» клемме будет избыток электронов по сравнению с «плюсовой» клеммой, то можно говорить, что между этими двумя клеммами существует напряжение. Суть возникновения напряжения заключается в том, что часть электронов с одной клеммы («плюсовой») переносится на другую («минусовую»). Чем больше мы электронов перенесем, тем больше будет созданное напряжение. Теперь, если мы замкнем между собой эти клеммы, то электроны начнут возвращаться с минусовой клеммы обратно на плюсовую, откуда они были взяты – потечет электрический ток. То есть напряжение порождает электрический ток при определенных условиях.

Напряжение, как, думаю, все из вас знают, измеряется в вольтах. Однако вольт не входит в основные единицы системы СИ. Вольт – это 1 Джоуль (единица измерения энергии)/1 Кулон (единица измерения заряда). Почему это так? Формальный вывод вы можете глянуть в учебнике физики. А если объяснять на пальцах – то все достаточно просто. Заряды одного знака (в частности, электроны) как мы с вами помним – отталкиваются друг от друга. Поэтому что бы перетащить электрон с плюсовой клеммы на минусовую – где и так уже куча электронов – надо совершить определенную работу. Минусовая клемма отталкивает от себя электроны, а мы их силой на нее запихиваем. Это как пытаться еще больше сжать уже наполовину сжатую пружину. Трудно довольно-таки. Напряжение в один вольт между клеммам возникает, когда мы совершаем работу в 1 Джоуль при переносе с одной клеммы на другую заряда в 1 кулон.

Не следует думать, что эта работа совершается впустую. Нет и еще раз нет! Эта энергия запасается. После, когда мы замкнем цепь и электрончики побегут с минуса обратно на плюс – они от радости, что возвращаются домой, они уже сами могут совершить некоторую работу – например, нагреть сопротивление или повращать электродвигатель или еще что-нибудь. Так что напряжение – это такая штука, что всегда готова вырваться наружу с энергией.

Возникает резонный вопрос – а как же перенести электроны с плюсовой клеммы на минусовую? Как создать это самое напряжение? Способов довольно много. Например, в батарейках – этот перенос возникает благодаря химической реакции. В фотоэлементах – благодаря действию энергии света на полупроводниковые материалы. В генераторах – благодаря действию магнитного поля на перемещающиеся в нем проводники. Возможно, позднее мы коснемся природы этих вещей более подробно.

Эти силы, которые участвуют в переносе электронов с плюса на минус – называют сторонними силами. А работа, которая ими совершается, очевидно, будет называться работой сторонних сил. И тут сам собой возникает термин ЭДС – электродвижущая сила.

ЭДС – это отношение работы сторонних сил по перемещению некоторого заряда, к этому самому заряду. По сути же получается то же самое напряжение, только, если можно так выразиться – с другой стороны. Напряжение все-таки возникает у нас между клеммами и открыто для потребителя. А ЭДС – это то, что скрыто от потребителя и характеризует процессы внутри источника. Эти процессы, эта работа протекает все время, пока источник функционирует и поддерживает напряжение, которое он выдает.

Рассмотрим чуть подробнее внутреннее устройство источника напряжения на примере простой модели. Эта модель представляет собой последовательное сопротивление ядра источника – устройства, в котором происходят различные процессы формирования напряжения и внутреннего сопротивления источника. Безусловно, в реальных устройствах они неотделимы друг от друга. Однако для облегчения понимания происходящих процессов их можно разделить, суть от этого не изменится. Итак, господа, так называемое ядро источника и выдает нам напряжение, точно равное ЭДС. А вот на клеммах источника питания – снаружи – мы может намерить напряжение, как равное ЭДС, так и меньше его.

Рассмотрим три разных случая (Рисунок 1, Рисунок 2, Рисунок 3). Во всех этих рисунках кружок с плюсом и минусом – это ядро источника, то, что непосредственно формирует напряжение. В нем как раз и работают сторонние силы и формируется ЭДС. Это самое ядро выдает нам напряжение точно равное значению ЭДС. Сопротивление R1 здесь – это внутреннее сопротивление источника. Обычно на практике оно составляет от долей Ома до единиц Ом. Заметьте, господа, и ядро E1 и сопротивление R1 обведены пунктиром – они находятся внутри батарейки! А вот сопротивление R2 находится за пределами батарейки – это наша полезная нагрузка. Например, лампочка. Или плеер. Или еще что.

Читайте также:  Как сделать проектор на стену

Случай 1 – у нас идеальная батарейка. Этот случай соответствует рисунку 1. Она не имеет внутреннего сопротивления. В жизни, увы, такое не встретишь, но для понимания физики процессов рассмотреть будет полезно. В этом случае даже при подключенной нагрузке мы будем иметь на выходных клеммах батарейки напряжение, равное ЭДС.

Рисунок 1 – Идеальный источник напряжения

Случай 2 – у нас не идеальная батарейка. У нее есть свое внутреннее сопротивление R1. Но мы не нагружаем батарейку, ничего к ней не подключаем. Этот случай соответствует рисунку 2. Тогда на выходных клеммах батарейки мы так же будем наблюдать напряжение U3, равное ЭДС.

Рисунок 2 – Реальный источник напряжения без нагрузки (холостой ход)

Случай 3 – у нас не идеальная батарейка и мы ее нагружаем сопротивлением R2. По цепи течет ток I. Этот случай соответствует рисунку 3. И вот в этом случае напряжение на клеммах, которое мы наблюдаем, не будет равно ЭДС! Оно будет меньше. Да, источник Е1 где-то в недрах батарейки все так же формирует напряжение U1, равное ЭДС. Но это напряжение делится между внутренним сопротивлением батарейки R1 и нашей нагрузкой R2. А сопротивление R1, как мы помним, так же находится в недрах батарейки и нам, юзерам, оно недоступно. Поэтому на клеммах батареи мы будем наблюдать напряжение, меньшее, чем ЭДС батареи. Этот случай чаще всего встречается в жизни. И именно он хорошо иллюстрирует, чем же отличается ЭДС источника и напряжение, формируемое источником.

Рисунок 3 – Реальный источник напряжения с нагрузкой

Итак, господа, краткий итог таков: напряжение, выдаваемое источником напряжения равно ЭДС тогда, когда мы можем пренебречь внутренним сопротивлением источника, а точнее падением напряжения на нем. Если же на внутреннем напряжении источника падает какое-либо напряжение, очевидно, выходное напряжение, формируемое источником, будем меньше ЭДС. Да, грань между понятиями ЭДС и напряжение довольно размытая, часто бывает путаница, но, господа, теперь ее будет меньше.

Коснемся теперь такого момента, как знак напряжения. Да, напряжение может быть как положительным, так и отрицательным. Физики процесса это нисколько не поменяет. Все остается в силе – на «отрицательной» клемме у нас электронов по прежнему больше, чем на «положительной». Все зависит от того, какой электрод мы примем за начальную точку отсчета, то есть за ноль. А что считать нулем, вообще говоря? Принято считать, что ноль в данном случае – это наша земля-матушка. То есть что происходит. Мы берем наш изначально отвязанный (не соединенный никакими проводами) от земли источник. И дальше одну его клемму – на выбор – соединяем с землей. Если мы соединили с землей отрицательную клемму – значит, на свободной от земли клемме электронов меньше, чем на той, которую мы заземлили и у нас положительный источник. Если наоборот – соединили с землей положительную клемму – у нас источник выдает отрицательное напряжение. Только и всего. Если у нас никакая клемма источника не соединена с землей, либо с какой-либо другой общей точкой, принятой в данной установке за ноль, то про такой источник питания бессмысленно говорить – положительный он или отрицательный. Можно лишь сказать, что на «отрицательной» клемме электронов больше, чем на положительной или то, что она имеет меньший потенциал.

Если у нас изначально источник питания сконструирован таким образом, что одна из его клемм подключена к земле – тут вообще все очевидно.

Спешу предупредить опасное заблуждение. Поскольку мы рассматриваем изначально отвязанные от земли источники питания, то соединение одной его клеммы с землей не вызовет протекание никакого тока! Часто можно встретить утверждение, что какие-то там токи потекут на землю, если подсоединить к ней одну из клемм источника. Нет, господа, нет и еще раз нет. Ничего там не потечет. Вы можете сами в этом убедиться. Возьмите вольтметр и измерьте напряжение между клеммами вашего отвязанного от земли источника и землей. Он покажет 0 Вольт, напряжения нет. Нет напряжения – не будет и тока. Однако если источник питания подключен одной из клемм к земле – тогда совсем другое дело, замыкание другой клеммы на землю приведет к короткому замыканию источника.

Вообще же тема земли и заземления совсем не такая простая, как кажется на первый взгляд. Там много хитрых моментов и подводных камней, особенно, когда речь заходит о заземлении высокочастотных цепей, либо цепей, в которых протекает очень большой ток. Однако это тема уже совсем другой статьи.

А пока мы заканчиваем. Всем удачи и до новых встреч!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.

Комментарии запрещены.

Присоединяйся