Колонна насосно компрессорных труб

Насосно-компрессорные трубы (НКТ) применяются практически при всех способах добычи нефти и газа и являются одним из ответственных элементов в конструкции добывающей скважины. Колонна, свинченная из НКТ, представляет собой подземный трубопровод, от надежности работы которого зависит успешная разработка нефтегазового месторождения. Колонна НКТ выполняет следующие важные функции:

1) обеспечивает подачу извлекаемых из продуктивных пластов нефти, газа или газоконденсата на наружную поверхность;

2) обеспечивает закачку в пласт жидкостей для выполнения различных технологических операций (гидроразрыв, паровоздействие, гидропескоструйная перфорация, промывка скважины и т.д.);

3) служит для подвески скважинных, гидропоршневых и погружных электронасосов, а также токопроводов [1, 2].

Конструкция колонн НКТ, т.е. диаметр труб и длина колонны, зависит от назначения, способа и режима эксплуатации скважины, прочности труб и конструкции обсадной эксплуатационной колонны.

Многообразие факторов, влияющих на работу колонны НКТ, и различ­ные виды работ, проводимые в скважине, обусловливают характер действующих нагрузок на насосно-компрессорные трубы.

На колонны НКТ действуют как статические, так и переменные нагрузки. Основная статическая нагрузка — это собственный вес колонны.

Колонны НКТ испытывают также сжимающие напряжения, которые зависят от гидростатического давления жидкости в скважине, передающегося на торец колонны труб. Следовательно, в подвешенном состоянии колонна будет иметь нейтральное сечение, в котором отсутствуют напряжения.

Внутреннее давление обусловлено в основном воздействием пластового давления. Наибольшее внутреннее давление в НКТ возникает в газовых скважинах при закрытом устье, при опрессовке колонн, глушении скважин. Если проводится гидравлический разрыв пласта, то колонна подвергается значительному давлению [1].

Равенство плотностей жидкости снаружи и внутри колонны устраняет избыточное давление. Если плотность за колонной (при наличии пакера) выше плотности жидкости в колонне, то наибольшее избыточное внутреннее давление флюида будет у устья. Иногда повышением давления за колонной можно уменьшить влияние внутреннего давления. Цементирование под давлением, опрессовка обсадных колонн с помощью НКТ также приводит к увеличению внутреннего давления за колонной.

Спуск колонны НКТ в наклонную скважину сопровождается появлением дополнительных растягивающих и сжимающих нагрузок, связанных с силами трения колонны о стенки скважины.

Величина сил трения зависит от искривления скважины и коэффициента трения с обсадной колонной. В искривленных скважинах возникает изгибающее напряжение, величина которого зависит от зенитного угла и азимута скважины. Пространственное искривление скважины иногда приводит к дополнительному осевому усилию при спуске или подъеме колонны НКТ.

Искривление скважин в значительной степени влияет на износ труб, особенно в местах их соединений. Несоосность резьбовых соединений также сильно влияет на износ ниппельных концов труб, образующийся при возвратно-поступательном движении штанг в трубах. На участках искривления в резьбовом соединении образуется изгибающее напряжение, понижающее его прочность, напряжения эти зависят от интенсивности и растут с увеличением диаметра [1].

В процессе освоения скважины, когда буровой раствор заменяют на воду, давление на колонну НКТ изменяется и кроме осевых нагрузок на трубы будет передаваться гидростатическое давление в радиальном направлении.

При замене жидкости в скважине нарушается равновесие, имевшее место к моменту спуска обсадных колонн, и, cледовательно, изменяются действующие на колонну нагрузки.

Фонтанный способ эксплуатации характерен наличием внутреннего давления движущегося флюида. Если колонна спускается с гидравлическим пакером, то в момент установки пакера на колонну будет действовать дополнительная осевая растягивающая сила, обусловленная внутренним устьевым давлением, необходимым для раскрытия пакера. Если колонна спускается с механическим пакером, то установка пакера связана с передачей сжимающей нагрузки на нижнюю часть колонны.

Сжимающая нагрузка может превысить критическую и тогда нижний участок колонны потеряет устойчивость, на которую влияют также внутреннее устьевое давление и скорость движения флюида в колонне.

При компрессорном способе эксплуатации колонна НКТ подвергается как наружному, так и внутреннему давлению флюида в зависимости от конструкции. В этом случае необходимо учитывать действие осевой растягивающей и радиальной сжимающей нагрузок.

Насосный способ эксплуатации характеризуется передачей колонне НКТ значительного внутреннего давления от столба жидкости в колонне. При ходе плунжера насоса вверх и вниз растягивающая нагрузка на колонну изменяется в результате изменения веса жидкости. Поэтому на колонну НКТ будет передаваться как статическая нагрузка от собственного веса, так и переменная нагрузка, обусловленная влиянием столба жидкости.

Движение насосных штанг создает трения о внутреннюю поверхность колонны. Направление сил трения изменяется при движении штанг, что также приводит к переменной нагрузке на колонну.

Применение различных методов интенсификации добычи нефти и газа связано с воздействием на колонну осевых нагрузок от собственного веса колонны и внутреннего давления, радиальных нагрузок, температурных напряжений и других.

Читайте также:  Как солить селедку слабосоленую

Искривление колонны НКТ в нижней ее части, обусловленное потерей устойчивости, может наблюдаться при различных способах эксплуатации.

В зависимости от величины внутреннего давления и скорости движения флюида, являющихся основными причинами нарушения устойчивости, длина участка колонны, на котором произойдет нарушение прямолинейной формы равновесия, будет изменяться.

Насосный способ эксплуатации будет характеризоваться периодическим нарушением равновесия с частотой, равной числу качаний балансира станка-качалки.

Движение жидкости по колонне труб при определенной скорости может привести к изменению режима движения и колебаниям колонны. В этом случае нижний участок колонны будет представлять собой автоколебательную систему.

Температурные напряжения возникают в колонне как при нагреве, так и при ее охлаждении. Если нижний конец колонны закреплен (например, при установке пакера), то нагрев колонны приведет к сжимающим напряжениям и возможному искривлению ее в результате потери устойчивости. Охлаждение колонны будет наблюдаться в основном при закачке в скважину жидкости преимущественно в зимнее время.

Искривление колонн способствует нарушению герметичности резьбовых соединений, так как конструкция гладких насосно-компрессорных труб рассчитана в основном на передачу осевых нагрузок и в меньшей степени на восприятие изгибающих моментов, при высоких давлениях рекомендуется применять трубы НКМ и НКБ [1, 2].

Не нашли то, что искали? Воспользуйтесь поиском:

НАСОСНО-КОМПРЕССОРНАЯ КОЛОННА (а. tubing string; н. Forderstrang, Steigrohrstrang, Steigrohrtour; ф. соlonne de production, train de tubing; и. tuberia de produccion, соlumna de tubos de produccion) — предназначена для транспортирования нефти и газа из продуктивного пласта; составляется из насосно-компрессорных труб путём их последовательного свинчивания.

Насосно-компрессорные трубы обычно изготовляются из стали с двумя нарезными концами и навинченной муфтой на одном конце (иногда безмуфтовые с раструбным концом). Резьба на трубах выполняется как треугольного, так и трапецеидального профиля. Диаметр труб с треугольной резьбой 33-114 мм; с трапецеидальной резьбой 60-114 мм. Толщина стенок труб 3,5-7,0 мм, длина 5,5-10 м. По механическим свойствам трубы выпускаются 6 групп прочности: Д, К, Е, Л, М, Р, с пределом текучести от 379 до 930 МПа. На каждую трубу наносится маркировка с указанием диаметра, группы прочности, толщины стенки, номера трубы и даты выпуска. Трубы транспортируются в пакетах, резьбовые концы труб защищаются предохранительными ниппелями и кольцами.

Длина насосно-компрессорной колонны достигает 3000 м, масса — 50 т. Насосно-компрессорные колонны бывают однорядными или двухрядными. Однорядные колонны обычно применяются при насосном способе эксплуатации, двухрядные — при фонтанном и компрессорном, когда необходимо понизить давление в колонне, чтобы обеспечить приток нефти и газа из пласта. При одновременной эксплуатации нескольких продуктивных пластов насосно-компрессорные колонны устанавливаются в скважине параллельно или концентрично. В зависимости от способа эксплуатации насосно-компрессорные колонны снабжаются специальным оборудованием — газовыми сепараторами, пусковыми клапанами, скважинными насосами и др. При фонтанном способе эксплуатации кольцевое пространство между обсадной колонной и насосно-компрессорной колонной обычно герметизируют путём установки в нижней части колонны пакера, позволяющего разгружать обсадную колонну от пластового давления. На насосно-компрессорную колонну действуют различные нагрузки; внутреннее и наружное давление нефти и газа, собственная масса труб, осевые нагрузки, связанные с установкой пакера, переменные нагрузки, обусловленные работой скважинного насоса, изгибающие напряжения на изогнутых участках скважины и др.

Насосно-компрессорная колонна теряет устойчивость прямолинейной формы равновесия под влиянием скорости движения нефти и газа по колонне и работы скважинного насоса. Механический износ насосно-компрессорной колонны связан с периодическим подъёмом и спуском колонны в процессе текущего и капитального ремонта скважин, а также с работой насосных штанг в колонне.

Насосно-компрессорная колонна подвергается коррозии под влиянием различных факторов, действующих в процессе эксплуатации скважины (кислорода, углекислого газа, сероводорода и др.). Для предохранения насосно-компрессорной колонны от коррозии применяют специальные материалы для изготовления труб и ингибиторы коррозии.

Насосно-компрессорная колонна подвешивается на фонтанной арматуре или пьедестале, закреплённом на устье скважины. Спуск и подъём насосно-компрессорной колонны проводят обычно с помощью передвижных подъёмников и агрегатов.

При добыче нефти трубы применяются для крепления стволов скважин и для образования каналов внутри скважин, подвески оборудования в скважине, прокладки трубопроводов по территории промысла. Типы применяемых труб весьма разнообразны, но можно выделить три основные группы: 1) насосно-компрессорные трубы; 2) обсадные и бурильные трубы; 3) трубы для нефтепромысловых коммуникаций.

Насосно-компрессорные трубы.

Из насосно-компрессорных труб (НКТ) составляются колонны, спускаемые в скважину. Колонны НКТ служат в основном для следующих целей:

§ подъема на поверхность отбираемой из пласта жидкости, смеси жидкости и газа или одного газа;

§ подачи в скважину жидкости или газа (осуществления технологических процессов, интенсификации добычи или подземного ремонта);

Читайте также:  Комната для массажа дизайн

§ подвески в скважине оборудования.

Для фонтанного и газлифтного подъемников используются так называемые насосно-компрессорные трубы (НКТ). Используются при гидроразрыве пласта или его солянокислотной обработке, при работах с внутрискважинным оборудованием, при ловильных работах, промывках песчаных пробок, для внутрипромысловых коммуникаций. Для этого типа труб характерны небольшой диаметр, обеспечивающий возможность их спуска в эксплуатационные колонны скважин; высокая прочность, позволяющая использовать их для подъемников в скважинах больших глубин при всех способах эксплуатации скважин, а также конусная резьба.

Насосно-компрессорные трубы отличаются материалом, группами прочности, герметичностью, противокоррозионной стойкостью, резьбой, быстротой стыковки, размерами, сопротивляемостью отложению парафина и солей (рис. 10).

Рисунок 10. Классификация насосно-компрессорных труб.

Гладкие трубы проще в изготовлении, но их концы ослаблены нарезанной на них резьбой. Трубы с высаженными наружу концами имеют одинаковую прочность по основному телу и у резьбы. Эти трубы называются равнопрочными.

Рисунок 11. Схемы типов соединений стальных насосно-компрессорных труб: а – неравнопрочное муфтовое; б – равнопрочное муфтовое с высадкой наружу; в – равнопрочное безмуфтовое с высадкой наружу; г -равнопрочное безмуфтовое с высадкой внутрь; д – равнопрочн равнопрочное муфтовое с приварными резьбовыми концами.

Наибольшее применение к настоящему времени получили стальные цельнокатаные неравнопрочные НКТ с муфтовыми резьбовыми соединениями (рис. 11, а). Неравнопрочность НКТ определяется разницей между площадями сечений тела трубы и в зоне резьбы, где снижение несущей способности пропорционально уменьшению площади сечения.

Неравнопрочные НКТ используются в качестве подъемных труб на скважинах малых и средних глубин. Широкое же их применение объясняется относительной простотой изготовления и меньшей стоимостью.

Трубы с высаженными наружу концами. Резьба нарезана на утолщенной части, что обеспечивает равенство площадей рабочего сечения и сечения по телу гладкой части трубы. Равнопрочные НКТ позволяют примерно на 25% сократить расход металла на колонну НКТ по сравнению с неравнопрочными и значительно увеличить максимальные глубины их спуска.

Новая конструкция. Равнопрочность в этом случае достигается привариванием коротких нарезанных концов труб к трубе с геометрическими размерами и формами примерно соответствующими резьбовой части неравнопрочной НКТ.

В последние годы применяются так называемые безмуфтовые гибкие трубы длиной до 800, а в некоторых случаях 1200–1500 м. Эти трубы выпускаются с прокатного стана полной строительной длины без промежуточных соединений и сматываются в бухту. Они спускаются в скважину со специального агрегата, обычно смонтированного на большегрузной автомашине. На агрегате расположены барабан с намотанными трубами, привод барабана и выпрямляющий узел, располагаемый над скважиной. Колонна труб сматывается с барабана, где она может деформироваться по радиусу барабана, проходит через выпрямляющее устройство (в нем находится около 2 м трубы) и спускается выпрямленная в скважину. За счет сил трения в этом устройстве колонна удерживается в скважине в подвешенном состоянии.

Через такую колонну труб можно подавать жидкость в скважину для промывки песчаных пробок, спускать оборудование для ремонтных и эксплуатационных работ. Естественно, что при таких безрезьбовых гибких трубах резко сокращается время спуска и подъема колонн, ликвидируются трудоемкие работы по свинчиванию и развинчиванию резьбовых соединений. К недостаткам относится громоздкость оборудования для спуска и подъема труб.

НКТ изготовляют главным образом из углеродистых сталей разных групп прочности с пределом текучести от 380 до 750 МПа. В настоящее время начали применяться НКТ из сплава на алюминиевой основе. Прочность сплава ниже минимальной прочности стали для НКТ, однако плотность сплава почти втрое меньше плотности стали, чем и определяется целесообразность применения легкосплавных труб, особенно в агрессивных средах газа или пластовой жидкости, по отношению к которым этот материал более стоек, чем сталь.

Наличие больших, непрерывно увеличивающихся ресурсов алюминия и производственных мощностей для изготовления легкосплавных труб в условиях постепенного роста доли разрабатываемых месторождений нефти и газа с агрессивными средами, а также большое значение, которое имеет уменьшение веса оборудования, в частности НКТ, делают использование легкосплавных НКТ весьма перспективным.

В последнее время делаются попытки использовать полимерные материалы и стекловолокно для изготовления НКТ. Целесообразность этого обусловливается их стойкостью по отношению к большей части агрессивных сред, особенно при высоких концентрациях в них H2S и СО2. Кроме того, НКТ из полимеров, как и легкосплавные, имеют малые массы. Однако конструирование и изготовление таких НКТ связаны с решением задачи обеспечения равнопрочности тела трубы и ее стыка, которая оказалась достаточно сложной и пока не решенной.

Примеры условных обозначений насосно-компрессорных труб приведены ниже:

трубы из стали группы прочности Е с условным диаметром 60 мм, толщиной стенки 5 мм:

Читайте также:  Как сделать заземление для стиральной машины

— 60х5-Е ГОСТ 633-80 — для гладких труб;

— В-60х5 ГОСТ 633-80 — для труб с высаженными наружу концами;

— НКМ-60х5 ГОСТ 633-80 — для высокогерметичных труб;

— НКБ-60х5 ГОСТ 633-80 — для высокогерметичных безмуфтовых труб.

По массе труб допускается отклонение от +6,5 до -3,5% для исполнения труб А (более точное исполнение) и от +8 до -6% для исполнения труб Б (менее точное исполнение).

Внутренний диаметр НКТ проверяется шаблоном длиной 1250 мм с наружным диаметром на 2..2,9 мм меньше номинального внутреннего диаметра трубы (меньшее отклонение для труб небольшого диаметра). На толщину стенки установлен минусовый допуск в 12,5% от толщины.

Трубы изготовляются из сталей следующих групп прочности: Д, К, Е, Л, М, Р:

Группа прочности стали Предел текучести не менее, МПа

Кроме того, НКТ могут изготавливаться из алюминиевого сплава марки Д16Т. Этот сплав имеет предел текучести около 300 МПа, предел выносливости 110 МПа. Относительная плотность сплава 2,72. Трубы, изготовленные из алюминиевого сплава, имеют значительно меньшую массу, чем стальные, а прочность их снижается меньше (в 1,25 раз по отношению к группе прочности стали Д, в 1,67 раз — к К и в 1,83 раза — к Е). Таким образом, колонны труб из алюминиевого сплава можно спускать глубже, или они будут иметь большой запас прочности при глубине спуска, одинаковой с глубиной спуска стальных труб.

Трубы из сплава Д16Т обладают и большей коррозионной стойкостью в сероводородсодержащих средах. Особенно повышаются их коррозионная стойкость и износостойкость при толстослойном анодировании.

Внутреннее покрытие НКТ.

В процессе эксплуатации скважин на внутренней поверхности НКТ откладываются парафин, смолы, соли, продукты коррозии. Парафин постепенно почти полностью закупоривает НКТ, что исключает возможность эксплуатации скважины. Для уменьшения интенсивности отложения парафина, солей, смол и защиты труб от коррозии применяются различные покрытия НКТ. Наиболее часто для этого используются стекло, эмали, эпоксидные смолы и лаки. Покрытия наносятся или сразу после изготовления труб до их поставки потребителям на заводах-изготовителях, или самими потребителями, т. е. на нефтегазодобывающих предприятиях.

В последнее время широко применяются НКТ, внутренняя поверхность которых покрыта стеклом, эпоксидными смолами. Менее распространено, но применяется эмалирование труб. Такие покрытия применяются для защиты от отложения парафина на трубах и защиты от коррозии внутренней поверхности труб. Кроме того, они снижают на 20–30 % гидравлические сопротивления потоку.

Покрытие стеклом обладает высокой теплостойкостью и достаточно прочно при небольших деформациях труб. На поверхности стекла не откладывается парафин. Однако покрытие стеклом имеет ряд недостатков. Один из них – образование микротрещин в стекле при покрытии им трубы. В результате образуются очаги коррозии металла и местного отложения парафина у трещин. В настоящее время отрабатывается технология покрытия, уменьшающая трещинообразование. Второй недостаток – разрушение стекла при деформации труб. Причиной этого служат различные модули упругости металла (0,21-106 МПа) и стекла (0.057-106 МПа). Вследствие этого при растяжении металла труб тонкому слою стекла передаются большие усилия, нарушающие его целостность. Это сказывается при больших глубинах подвески труб и при транспортировке их, когда трубы не предохранены от изгиба.

Покрытие труб эпоксидными смолами также хорошо защищает их от отложений парафина. Эпоксидные смолы эластичнее стекла, и при деформации труб смола не трескается. Но она имеет свои недостатки. Температура, при которой можно применять смолы, невысокая – не более 60 °С. Покрытие труб стеклом и эпоксидной смолой рассматривается как эффективное средство борьбы с отложением парафина. То или иное покрытие необходимо выбирать в зависимости от условий эксплуатации.

В последние годы расширяется применение эмалированных труб. Они обладают наиболее прочным покрытием (значительно прочнее стекла), высокой температуростойкостью, морозоустойчивостью и гладкой поверхностью, на которой парафин не откладывается. Для защиты НКТ от агрессивных сред трубы покрываются несколькими слоями эмали. Технология наложения эмали значительно сложнее технологии покрытия стеклом и эпоксидной смолой.

Общий недостаток покрытий то, что место муфтового соединения труб остается незащищенным. В этом месте можно устанавливать эластичные проставки, перекрывающие незащищенное место, или протекторные кольца, потенциал материала которых таков, что кольца корродируют сами, защищая от коррозии близко расположенные участки трубы. Однако такие меры практикуются редко, так как они имеют крупные недостатки.

Комментарии запрещены.

Присоединяйся