Какая частица имеет электрический заряд

112 курсов профессиональной переподготовки от 3540 руб.

268 курсов повышения квалификации от 840 руб.

МОСКОВСКИЕ ДОКУМЕНТЫ ДЛЯ АТТЕСТАЦИИ

Смотреть каталог курсов ➜

Лицензия на осуществление образовательной деятельности №038767 выдана 26 сентября 2017 г. Департаменотом образования города Москвы

Рекомендуйте
курсы «Инфоурок» и получайте вознаграждение

Электрический заряд и элементарные частицы. Закон сохранения электрического заряда

Электрический заряд
q, Q
Размерность T I
Единицы измерения
СИ кулон
СГСЭ статкулон (франклин)
СГСМ абкулон
Другие единицы ампер-час, фарадей, элементарный заряд
Примечания
скалярная величина, Квантуется
Классическая электродинамика
Электричество · Магнетизм
См. также: Портал:Физика

Электри́ческий заря́д (коли́чество электри́чества) — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения заряда в Международной системе единиц (СИ) — кулон — электрический заряд, проходящий через поперечное сечение проводника с током 1 А за время 1 с . Заряд в один кулон очень велик. Если бы два носителя заряда ( q 1 = q 2 = 1 Кл ) расположили в вакууме на расстоянии 1 м , то они взаимодействовали бы с силой 9⋅10 9 H , то есть с силой, с которой гравитация Земли притягивает предмет массой порядка 1 миллиона тонн.

Содержание

История [ править | править код ]

Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным» соответственно. Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда.

Электростатика [ править | править код ]

Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.

Величина электрического заряда (иначе, просто электрический заряд) может принимать и положительные, и отрицательные значения; она является численной характеристикой носителей заряда и заряженных тел. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.

Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных примерно 1,6⋅10 −19 Кл [1] в системе СИ или 4,8⋅10 −10 ед. СГСЭ [2] . Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса равна 9,11⋅10 −31 кг ). Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом — позитрон, имеющая такую же массу, как и электрон [3] . Также существует устойчивая частица с одним положительным элементарным зарядом — протон (масса равна 1,67⋅10 −27 кг ) и другие, менее распространённые частицы. Выдвинута гипотеза (1964 г.), что существуют также частицы с меньшим зарядом (±⅓ и ±⅔ элементарного заряда) — кварки; однако они не выделены в свободном состоянии (и, по-видимому, могут существовать лишь в составе других частиц — адронов), в результате любая свободная частица несёт лишь целое число элементарных зарядов.

Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени её жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.

Читайте также:  Как сделать книгу с рисунками

Взаимодействие зарядов [ править | править код ]

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — электризация тел при соприкосновении [4] . Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух различных видов зарядов [5] . Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения электрического заряда [ править | править код ]

Электрический заряд замкнутой системы [6] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолирована, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда сохраняется.

Закон сохранения электрического заряда — один из основополагающих законов физики. Он был впервые экспериментально подтверждён в 1843 году английским учёным Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Свободные заряды [ править | править код ]

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.

  • Проводники — тела, в которых электрический заряд может перемещаться по всему его объёму. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворыкислот), в которых перенос зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.
  • Диэлектрики (например стекло, пластмасса) — тела, в которых практически отсутствуют свободные заряды.
  • Полупроводники (например, германий, кремний) занимают промежуточное положение между проводниками и диэлектриками.

Измерение [ править | править код ]

Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая способна вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стержнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.

Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным». Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда

Электростатика

Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.

Величина электрического заряда (иначе, просто электрический заряд) — численная характеристика носителей заряда и заряженных тел, которая может принимать положительные и отрицательные значения. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.

Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных примерно 1,6·10 −19 Кл [1] в системе СИ или 4,8·10 −10 ед. СГСЭ [2] . Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса равна 9,11·10 −31 кг ). Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом — позитрон, имеющая такую же массу, как и электрон [3] . Также существует устойчивая частица с одним положительным элементарным зарядом — протон (масса равна 1,67·10 −27 кг ) и другие, менее распространённые частицы. Выдвинута гипотеза (1964 г.), что существуют также частицы с меньшим зарядом (±⅓ и ±⅔ элементарного заряда) — кварки; однако они не выделены в свободном состоянии (и, по-видимому, могут существовать лишь в составе других частиц — адронов), в результате любая свободная частица несёт лишь целое число элементарных зарядов.

Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени ее жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.

Взаимодействие зарядов

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении [4] . Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется предположением о существовании двух различных видов зарядов. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения электрического заряда

Электрический заряд замкнутой системы [5] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолированна, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.

Закон сохранения заряда — один из основополагающих законов физики. Закон сохранения заряда был впервые экспериментально подтверждён в 1843 году великим английским ученым Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Свободные заряды

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.

  • Проводники — это тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворыкислот), в которых перенос зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.
  • Диэлектрики (например стекло, пластмасса) — тела, в которых практически отсутствуют свободные заряды.
  • Полупроводники (например, германий, кремний) занимают промежуточное положение между проводниками и диэлектриками.

Измерение

Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стрежнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.

См. также

Литература

  • М. Ю. Хлопов.Заряд // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин, А. М. Бонч-Бруевич, А. С. Боровик-Романов, Б. К. Вайнштейн, С. В. Вонсовский, А. В. Гапонов-Грехов, С. С. Герштейн, И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич, М. Е. Жаботинский, Д. Н. Зубарев, Б. Б. Кадомцев, И. С. Шапиро, Д. В. Ширков; под общ. ред. А. М. Прохорова. — М .: Советская энциклопедия, 1988—1998.

Примечания

  1. Или, более точно, 1,602176487(40)·10 −19 Кл.
  2. Или, более точно, 4,803250(21)·10 −10 ед СГСЭ.
  3. Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается
  4. Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света
  5. Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).

Wikimedia Foundation . 2010 .

Смотреть что такое "Электрический заряд" в других словарях:

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД — ЭЛЕКТРИЧЕСКИЙ ЗАРЯД, источник электромагнитного поля; величина, определяющая интенсивность электромагнитного взаимодействия заряженных частиц. В СИ измеряется в кулонах (кл). Существует 2 вида электрических зарядов (впервые установлено… … Современная энциклопедия

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД — величина, определяющая интенсивность электромагнитного взаимодействия заряженных частиц; источник электромагнитного поля. Электрический заряд любых заряженных тел целое кратное элементарного электрического заряда е. Электрические заряды… … Большой Энциклопедический словарь

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД — источник эл. магн. поля, связанный с матер. носителем; внутр. хар ка элем. ч цы, определяющая её электромагнитное взаимодействие. Вся совокупность электрич. и магн. явлений есть проявление существования, движения и вз ствия Э. з. Различают два… … Физическая энциклопедия

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД — (обозначение q или Q), качество, присущее некоторым ЭЛЕМЕНТАРНЫМ ЧАСТИЦАМ. Электрические заряды (которые измеряются в КУЛОНАХ) могут быть положительными или отрицательными. Если две частицы имеют положительный (или отрицательный) заряд, они… … Научно-технический энциклопедический словарь

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД — (4) … Большая политехническая энциклопедия

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД — количество электричества, находящегося в каком нибудь теле (см. Кулон). Технический железнодорожный словарь. М.: Государственное транспортное железнодорожное издательство. Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А.… … Технический железнодорожный словарь

электрический заряд — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electric charge … Справочник технического переводчика

электрический заряд — величина, определяющая интенсивность электромагнитного взаимодействия заряженных частиц; источник электромагнитного поля. Электрический заряд любых заряженных тел целое кратное элементарного электрический заряда е. Электрический заряд… … Энциклопедический словарь

электрический заряд — Charge Электрический заряд Количественная характеристика, показывающая степень возможного участия тела в электромагнитных взаимодействиях Носителями электрического заряда являются электрически заряженные элементарные частицы электрон (один… … Толковый англо-русский словарь по нанотехнологии. – М.

Электрический заряд — источник электромагнитного поля, связанный с материальным носителем; внутренняя характеристика элементарной частицы, определяющая её Электромагнитные взаимодействия. Э. з. одно из основных понятий учения об электричестве. Вся совокупность … Большая советская энциклопедия

Симметрия в физике
Преобразование Соответствующая
инвариантность
Соответствующий
закон
сохранения
↕ Трансляции времени Однородность
времени
…энергии
⊠ C, P, CP и T-симметрии Изотропность
времени
…чётности
↔ Трансляции пространства Однородность
пространства
…импульса
↺ Вращения пространства Изотропность
пространства
…момента
импульса
⇆ Группа Лоренца (бусты) Относительность
Лоренц-ковариантность
…движения
центра масс

Комментарии запрещены.

Присоединяйся