Какими могут быть тепловые сети

Для транспортировки тепла к потребителям используют трубопроводы – тепловые сети, которые могут передавать тепло с помощью воды и пара, их соответственно называют водяными и паровыми. В настоящее время тепловые сети передают тепло на большие расстояния. Во избежание больших теплопотерь они должны быть теплоизолированными.

Различают транзитные, магистральные, распределительные и кольцевые трубопроводы. Тепловые сети, которые подводят тепло к промышленным предприятиям, называют промышленными, к жилым и общественным зданиям – коммунальными, к предприятиям и гражданским зданиям – смешанными.

Схемы тепловых сетей в плане могут быть двух видов: радиальные и кольцевые. Радиальная схема теплоснабжения представляет собой тупиковые ответвления ко всем объектам. В случае аварии эти объекты оказываются отключенными. Кольцевая схема теплоснабжения более надежна и бесперебойна в работе. В ней все ветки мелких ответвлений объединены в общий контур. Тепловые сети разных районов города могут быть соединены между собой, чтобы в случае выхода из строя одного источника тепла его мог дублировать другой. Это позволяет бесперебойно снабжать теплом все районы города и одновременно устранять неисправность.

Тепловые сети делают двух- и многотрубными. Наиболее распространена двухтрубная система, при которой одна труба – подающая, другая – обратная. В этой системе вода циркулирует по замкнутому кругу: отдав свое тепло потребителю, она возвращается в котельную.

В жилых районах применяют два вида водяных систем теплоснабжения: открытую и закрытую. Разница заключается в том, что при закрытой системе теплоснабжения в трубопроводах циркулирует постоянное количество воды, а при открытой системе – часть воды непосредственно из системы разбирается на нужды горячего водоснабжения. В открытой системе теплоснабжения вода должна быть по качеству равноценна питьевой, а запас воды на источнике тепла должен постоянно пополняться.

Однотрубная система подает теплоноситель для отопления и вентиляции, а затем выпускает его в качестве горячего водоснабжения. Вариант наиболее дешевый, но трудно рассчитываемый. Трехтрубная система обеспечивает подачу тепла по двум трубам с разными параметрами теплоносителя, а возврат осуществляется по третьей трубе. В четырехтрубной системе подача тепла на отопление и горячее водоснабжение разделена по двум парам труб. Наиболее применима в настоящее время в населенных пунктах раздельная двухтрубная система теплоснабжения ввиду удобства и экономичности ее использования.

Для горячего водоснабжения используют открытый и закрытый варианты присоединения к тепловым сетям. В открытых сетях горячая вода поступает прямо из теплосети и восполняет в ней тепло из источника. Качество горячей воды невысокое. В закрытых сетях вода теплосети полностью возвращается к тепловому источнику, нагревая водопроводную воду для горячего водоснабжения в теплообменных аппаратах. В этом случае качество горячей воды высокое.

Тепловые сети прокладывают над землей и под землей. Надземная прокладка дешевле, но часто недопустима по эстетическим соображениям. Подземная прокладка наиболее распространена. Различают канальную и бесканальную прокладки трубопроводов.

Канальная прокладка трубопроводов дороже, но надежнее, так как стенки канала защищают трубы от случайных воздействий, блуждающих токов и т.д. Каналы делают кирпичными и железобетонными. По конструкции они бывают проходные (высотой 2 м), полупроходные (высотой 1,4м) и непроходные.

Бесканальная прокладка теплопроводов – простой и дешевый способ заложения, поэтому он наиболее распространен, особенно при реконструкции и в малоэтажной застройке. Трубы укладываются прямо в грунт. Этот способ имеет, однако, большие недостатки: коррозия, трудоемкость ремонта, отсутствие периодического надзора. Частично их преодолевают, защищая трубы от внешних воздействий грунта изоляционным материалом, цементной коркой и гидроизоляцией. Применяют и армированный пенобетон, где арматуру выполняют в виде сетки, что придает значительную жесткость трубопроводам.

В настоящее время вместо ранее применявшейся армопенобетонной бесканальной прокладки трубопроводов очень широкое применение получили теплоизолированные пенополиуретановые (ППУ) системы трубопроводов. Принципиальной особенностью этого вида прокладки трубопроводов является практически полная герметичность конструкции, позволяющая располагать трубопроводы тепловых сетей во влажных грунтах без дополнительной гидроизоляции и попутного дренажа. Кроме того, конструкция прокладки трубопроводов может быть оборудована системой оперативного дистанционного контроля (СОДК), позволяющей систематически отслеживать и находить места увлажнения изоляции. При этом способе бесканальной прокладки используют трубы с теплоизоляцией из пенополиуретана диаметром от 57 до 1020 мм в гидроизоляционной оболочке из плотного полиэтилена.

Из этого же вида тепловой изоляции изготавливают фасонные изделия для прокладки трубопроводов: отводы, z-образные элементы для компенсации температурных удлинений, тройники, неподвижные опоры, спускники и воздушники и др. Трубы применяют только новые стальные, черные или оцинкованные марок Ст. 10, Ст. 20, Ст. 17ГС и другие в соответствии с требованиями Госгортехнадзора России.

При строительстве теплотрасс из ППУ трубопроводов особое внимание уделяют тепловой и водонепроницаемой изоляциям стыковых соединений. При этом используют специальную сварную муфту, обеспечивающую абсолютно герметичное соединение стыков. Пенополиуретановая изоляция рассчитана на длительное воздействие температуры теплоносителя до 130 "С и на кратковременное воздействие температуры до 150 °С. Все трубы и остальные элементы трубопроводов при использовании такого оборудования снабжены проводами оперативного дистанционного контроля, сигнализирующими о повреждении проводов или о наличии влаги в изоляционном слое при эксплуатации. Система основана на проводимости теплоизоляционного слоя, которая изменяется при изменении влажности. Для поиска мест неисправности (увлажнение изоляции, обрыв сигнальных проводников) используют методы и приборы, основанные на действии импульсной рефлексометрии.

Читайте также:  Какой автоклав выбрать для дома

СОДК включает в себя сигнальные медные проводники, заложенные во все элементы теплосети, разъемы по трассе и в местах контроля (ДТП, котельной), переносные приборы для периодической проверки и стационарные – для непрерывного контроля.

Прокладка в непроходных каналах – наиболее удобный способ прокладки теплопроводов, чем и объясняется его частое применение. Преимущество этого способа по сравнению с бесканальной прокладкой состоит в том, что трубопровод защищен от колебания давления в грунте, так как заключен в канал, где находится на специальных подвижных и неподвижных опорах. Его недостаток заключается в отсутствии постоянного наблюдения за состоянием сетей, а в случае аварии трудно найти место повреждения. В непроходных каналах теплосети могут располагаться с нефтемазутопроводами, трубопроводами сжатого воздуха давлением до 1,6 МПа и водопроводами.

В проходных коллекторах теплосети могут размещаться совместно с водопроводами диаметром до 300 мм, кабелями связи, силовыми кабелями напряжением до 10 кВ, а в городских коллекторах, а также с трубопроводами сжатого воздуха давлением до 1,6 МПа и i напорной канализацией. Во внутриквартальных коллекторах допускается совместная прокладка водяных сетей диаметром не более 250 мм с газопроводами природного газа давлением до 0,005 МПа и диаметром до 150 мм. При совместной прокладке теплосети и водопровода во избежание нагревания изолируют, размещая его либо в одном ряду, либо под тепловыми сетями, учитывая при этом нормативную глубину заложения. В проходных коллекторах ведут непрерывное наблюдение и контроль за состоянием сетей. Ремонт таких сетей упрощается.

В сложных участках, например, под центральными магистралями с большим движением, при пересечении железных дорог, под зданиями, где проходные коллекторы невозможно проложить, а непроходные каналы нельзя прокладывать из-за ограниченной возможности развития на случай ремонта, применяют полупроходные каналы. Хотя в них проход очень мал (высота – до 1,4 м, ширина – 0,4. 0,5 м), все же можно осмотреть и отремонтировать теплосеть.

Трассу тепловых сетей в городах прокладывают в отведенных для инженерных сетей технических полосах параллельно красным линиям улиц, дорог и проездов вне проезжей части и полосы зеленых насаждений, но при обосновании допускается расположение теплотрассы под проезжей частью или тротуаром. Теплосети нельзя прокладывать вдоль бровок террас, оврагов или искусственных выемок при просадочных грунтах.

Уклон тепловых сетей независимо от направления движения теплоносителя и способа прокладки должен быть не менее 0,002.

В СНиП 2.04.07-86* содержатся особые условия для устройства пересечений тепловыми сетями других подземных сооружений.

Магистральные сети располагаются по главным направлениям от источника тепла и состоят из труб больших диаметров – от 400 до 1200 мм. Разводящие сети имеют диаметр трубопроводов от 100 до 300 мм, а диаметр трубопроводов, ведущих к потребителям,– 50. 150 мм.

Паровые системы теплоснабжения делают одно- и двухтрубными, при этом конденсат возвращается по специальной трубе – конденсатопроводу. Под действием начального давления 0,6. 0,7 МПа, а иногда и 1,3. 1,6 МПа, пар движется со скоростью 30. 40 м/с. При выборе способа прокладки теплопроводов главной задачей является обеспечение долговечности, надежности и экономичности решения. Тепловые сети монтируют из стальных электросварных труб, расположенных на специальных опорах. На трубах устраивают запорную и регулирующую арматуры (задвижки, вентили). Опоры трубопроводов создают горизонтальное незыблемое основание. Интервал между опорами определяют при проектировании.

Опоры тепловых сетей подразделяют на неподвижные и подвижные. Неподвижные опоры фиксируют расположение конкретных мест сетей в определенной позиции, не допускают никаких смещений. Подвижные опоры допускают перемещение трубопровода по горизонтали вследствие температурных деформаций.

Между неподвижными опорами на расчетных расстояниях располагают П-образные удлинения труб, компенсирующие температурные напряжения, удлиняющие трубопровод. Компенсаторы предохраняют сети от разрушений.

Для размещения на теплотрассе отключающей арматуры, неподвижных опор устраивают камеры высотой 2 м. В них спускаются через люки.

Не нашли то, что искали? Воспользуйтесь поиском:

Назначение тепловых сетей – соединение источников тепла с местами его потребления. Наружными тепловыми сетями (при централизованном теплоснабжении) называют сети, соединяющие источник тепла с пунктами, распределяющими тепло, в отличие от теплопроводов, прокладываемых внутри зданий и называемых теплопроводами внутренней разводки.

Наружные тепловые сети прокладывают, как правило, в земле (в проходных, полупроходных и непроходных каналах, бесканально), открыто (на кронштейнах по стенам строений, на бетонных, железобетонных и металлических опорах, на отдельных конструкциях мостов при переходах через железнодорожные пути и водные преграды) и дюкером. Тепловые сети, проходящие по подвалам или по техническим подпольям, т. е. внутри зданий, именуются также наружными сетями, поскольку соединяют, как указывалось выше, источник тепла с тепловыми пунктами, в которых устанавливаются элеваторные и тепловые узлы, подогреватели и прочие устройства, распределяющие тепло.

Читайте также:  Клумбы из пластмассовых бутылок

Теплопроводы от этих узлов до мест потребления тепла (отопительных панелей и радиаторов, калориферов, кондиционеров, технологических установок и т. д.) относятся к теплопроводам внутренней разводки (системы центрального отопления и горячего водоснабжения, разводки внутри зданий котельных, теплоэлектроцентралей).

Здания и сооружения снабжаются теплом от местных котельных, обслуживающих одно или несколько обычно рядом расположенных строений, или централизованно от крупных (групповых) районных или квартальных котельных, обслуживающих все строения района или квартала города, и от ТЭЦ, комбинированно вырабатывающях тепловую и электрическую энергию (теплофикация). Централизованное теплоснабжение от районных или квартальных котельных и особенно от ТЭЦ по сравнению с теплоснабжением от местных котельных является наиболее перспективным, экономичным и в настоящее время находит все более широкое применение.

Наружные тепловые сети разделяются на магистральные – от источника тепла до микрорайона (квартала) или до промышленного предприятия, на распределительные — от магистральных тепловых сетей до ответвлений (вводов) к отдельным строениям и на ответвления (вводы) – от распределительных или магистральных тепловых сетей до узлов присоединений систем потребителей тепла.

Транспортируемый теплоноситель используется для отопления, горячего водоснабжения и вентиляции, а также для производственно-технологических нужд. В зависимости от вида теплоносителя сети делятся на паровые и водяные. При теплоносителе паре к источнику тепла от мест его потребления возвращается конденсат. Сети, в которых циркулирует постоянное количество теплоносителя (без разбора его у потребителей), называются закрытыми; сети с непосредственным разбором воды — открытыми.

По характеру потребителей тепловые сети делятся на промышленные, коммунальные и смешанные. В настоящее время приняты двухтрубные и многотрубные системы теплоснабжения. По конфигурации тепловые сети могут быть лучевыми и кольцевыми. Кольцевые сети обеспечивают лучший гидравлический режим и позволяют отключать для ремонта отдельные линии сетей, не прерывая снабжения теплом потребителей.

FAQ Источники теплоэнергии

Тепловые сети

Абонентские вводы

Системы отопления

Горячее водоснабжение

КИПиА теплоснабжения

Тепловая сеть– это совокупность трубопроводов и устройств, обеспе-

чивающих по­средством теплоносителя (горячей воды или пара) транспортировку теплоты от источника теплоснабжения к потребителям.

Конструкционно тепловая сеть включает трубопроводы с теплоизоляцией и компенсаторами, устройства для укладки и закрепления трубопроводов, а так же запорную или регулирующую арматуру.

Выбор теплоносителя определяется анализом его положительных и отрицательных свойств. Основные преимущества водяной системы теплоснабжения: высокая аккумулирующая способность воды; возможность транспортировки на большие расстояния; по сравнению с паром меньшие потери тепла при транспортировке; возможность регулирования тепловой нагрузки путем изменения температуры или гидравлического режима. Основной недостаток водяных систем – это большой расход энергии на перемещение теплоносителя в системе. Кроме того, использование воды в качестве теплоносителя, возникает необходимость в специальной ее подготовке. При подготовке в ней нормируются показатели карбонатной жесткости, содержание кислорода, содержание железа и pH. Водяные тепловые сети обычно применяются для удовлетворения отопительно – вентиляционной нагрузки, нагрузки горячего водоснабжения и технологической нагрузки малого потенциала (температура ниже 100 0 С).

Преимущества пара как теплоносителя следующие: малые потери энергии при движении в каналах; интенсивная теплоотдача при конденсации в тепловых приборах; в высокопотенциальных технологических нагрузках пар можно использовать с высокими температурой и давлением. Недостаток: эксплуатация паровых систем теплоснабжения требует соблюдения особых мер безопасности.

Схема тепловой сети определяется следующими факторами: размеще­нием источника теплоснабжения по отношению к району теплового потреб­ления, характером тепловой нагрузки потребителей, видом теплоносителя и принципом его использования.

Тепловые сети подразделяются на:

магистральные,прокладываемые по главным направлениям объектов теплопотребления;

распределительные,которые расположены между магистральными тепловыми сетями и узлами ответвления;

ответвления тепловых сетей к отдельным потребителям (зданиям).

Схемы тепловых сетей применяют, как правило, лучевые, рис. 5.1. От ТЭЦ или котельной 4 по лучевым магистралям 1 теплоноситель поступает к потребителю теплоты 2. С целью резервного обеспечения теплотой потре бителей лучевые магистрали соединяются перемычками 3.

Радиус действия водяных сетей теплоснабжения достигает

12 км. При небольших протяженностях магистралей, что характерно для сельских тепловых сетей, применяют радиальную схему с постоянным уменьшением диаметра труб по мере удаления от источника теплоснабжения.

Укладка тепловых сетей может быть надземной (воздушной) и подземной.

Надземная укладка труб (на

отдельно стоящих мачтах или эстакадах, на бетонных блоках и применяется на территориях предприятий, при сооружении тепловых сетей вне черты города при пересечении оврагов и т.д.

В сельских населенных пунктах наземная прокладка может быть на низких опорах и опорах средней высоты. Этот способ при- меним при температуре тепло-

носителя не более 115 0 С. Подземная прокладка наиболее распространена. Различают канальную и бесканальную прокладку. На рис. 5.2 изображена канальная прокладка. При канальной прокладке, изоляционная конст­рукция трубопроводов разгружена от внешних нагрузок засыпки. При беска­нальной прокладке (см. рис. 5.3) трубопроводы 2 укладывают на опоры 3 (гравийные

Читайте также:  Как снять информацию с неисправного телефона

или песчаные подушки, деревян- ные бруски и другое).

Засыпка 1, в качестве которой используют: гравий, крупнозернистый песок, фрезерный торф, керамзит и т.п., служит защитой от внешних повреждений и одновременно снижает теплопотери. При канальной прокладке температура теплоносителя может достигать 180 °С. Для тепловых сетей, чаще всего используют стальные трубы диаметром от 25 до 400 мм. С целью предотвращения разрушения металлических труб вследствие температурной деформации по длине всего трубопровода через определенные расстояния устанавливаются к о м п е н с а т о р ы.


Различные конструктивные выполнения компенсаторов приведены на рис. 5.4.

Рис. 5.4. Компенсаторы:

а – П-образный; б – лирообразный; в – сальниковый; г – линзовый

Компенсаторы вида а ( П-образный) и б (лирообразный) называют радиальными. В них изменение длины трубы компенсируется деформацией материала в изгибах. В сальниковых компенсаторах в возможно скольжение трубы в трубе. Втаких компенсаторах возникает потребность в надежной конструкции уплотнения. Компенсатор г – линзового типа выбирает изменение длины за счет пружинящего действия линз. Большие перспективы у с и л ь ф о н н ы х компенсаторов. Сильфон – тонкостенная гофрированная оболочка, позволяющая воспринимать различные перемещения в осевом, поперечном и угловом направлениях, снижать уровень вибраций и компенсировать несоосность.

Трубы укладываются на специальные опора двух типов: свободные и неподвижные. Свободные опоры обеспечивают перемещение труб при температурных деформациях. Неподвижные опоры фиксируют положение труб на определенных участках. Расстояние между неподвижными опорами зависит от диаметра трубы, так, например, при D = 100 мм L= 65 м; при D = 200 мм L = 95 м. Между неподвижных опор под трубы с компенсаторами устанавливают 2…3 подвижных опоры.

В настоящее время вместо металлических труб, требующих серьезной защиты от коррозии, начали широко внедряться пластиковые трубы. Промышленность многих стран выпускает большой ассортимент труб из поли-мерных материалов (полипропилена, полиолефена); труб металлопластиковых; труб, изготовленных намоткой нити из графита, базальта, стекла.

На магистральных и распределительных тепловых сетях укладывают трубы с теплоизоляцией, нанесенной индустриальным способом. Для теплоизоляции пластиковых труб предпочтительнее использовать полимеризующиеся материалы: пенополиуретан, пенополистерол и др. Для металлических труб используют битумоперлитовую или фенольнопоропластовую изоляцию.

5.2. Тепловые пункты

Тепловой пункт – это комплекс устройств, расположенных в обособленном помещении, состоящих из теплообменных аппаратов и элементов теплотехнического оборудования.

Тепловые пункты обеспечивают присоединения теплопотребляющих объектов к тепловой сети. Основной задачей ТП является:

– трансформация тепловой энергии;

– распределение теплоносителя по системам теплопотребления;

– контроль и регулирование параметров теплоносителя;

– учета расходов теплоносителей и теплоты;

– отключение систем теплопотребления;

– защита систем теплопотребления от аварийного повышения параметров теплоносителя.

Тепловые пункты подразделяются по наличию тепловых сетей после них на: центральные тепловые пункты (ЦТП) и индивидуальные тепловые пункты (ИТП). К ЦТП присоединяются два и более объекта теплопотребления. ИТП подсоединяет тепловую сеть к одному объекту или его части. По размещению тепловые пункты могут быть отдельно стоящие, пристроенные к зданиям и сооружениям и встроенные в здания и сооружения.

На рис. 5.5 приведена типичная схема систем ИТП, обеспечивающего отопление и горячее водоснабжение отдельного объекта.

Из тепловой сети к запорным кранам теплового пункта подведены две трубы: п о д а ю щ а я (поступает высокотемпературный теплоноситель) и

о б р а т н а я (отводится охлажденный теплоноситель). Параметры теплоносителя в подающем трубопроводе: для воды (давление до 2,5 МПа, температура – не выше 200 0 С), для пара (р t 0 C). Внутри теплового пункта установлены как минимум два теплообменных аппарата рекуперативного типа (кожухотрубные или пластинчатые). Один обеспечивает трансформацию теплоты в систему отопления объекта, другой – в систему горячего водоснабжения. Как в ту, так и в другую системы перед теплообменниками вмонтированы приборы контроля и регулирования параметров и подачи теплоносителя, что позволяет вести автоматический учет потребляемой теплоты. Для системы отопления вода в теплообменнике нагревается максимум до 95 0 С и циркуляционным насосом прокачивается через нагревательные приборы. Циркуляционные насосы (один рабочий, другой резервный) устанавливаются на обратном трубопроводе. Для горячего водоснаб-

жения вода, прокачиваемая через теплообменник циркуляционным насосом, нагревается до 60 0 С и подается потребителю. Расход воды компенсируется в теплообменник из системы холодного водоснабжения. Для учета теплоты, затраченной на нагрев воды, и ее расхода устанавливаются соответствующие датчики и регистрирующие приборы.

Дата добавления: 2015-08-04 ; просмотров: 13175 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Комментарии запрещены.

Присоединяйся