Классификация машин постоянного тока по способу возбуждения

Ток, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток . Электрические машины постоянного тока следует различать по способу возбуждения и схеме включения обмотки возбуждения.

Генераторы постоянного тока могут выполняться с независимым, параллельным, последовательным и смешанным возбуждением. Следует заметить, что теперь применение в качестве источников энергии генераторов постоянного тока очень ограничено.

Обмотка возбуждения генератора постоянного тока с независимым возбуждением получает питание от независимого источника — сети постоянного тока, специального возбудителя , преобразователя и др. (рис. 1, а). Эти генераторы применяются в мощных системах, когда напряжение возбуждения должно быть выбрано отличным от напряжения генератора, в системах регулирования скорости вращения двигателей, которые питаются от генераторов и других источников.

Значение тока возбуждения мощных генераторов составляет 1,0—1,5% от тока генераторов и до десятков процентов для машин мощностью порядка десятков ватт.

Рис. 1. Схемы генераторов постоянного тока: а — с независимым возбуждением; б — с параллельным возбуждением; в — с последовательным возбуждением; г — со смешанным возбуждением П — потребители

У г енератора с параллельным возбуждением обмотка возбуждения включается на напряжение самого генератора (смотрите рис. 1,б). Ток якоря I я равен сумме токов нагрузки I п и тока возбуждения I в: I я = I п + I в

Генераторы выполняются обычно для средних мощностей.

Обмотка возбуждения генератора с последовательным возбуждением включена последовательно в цепь якоря и обтекается током якоря (рис. 1, в). Процесс самовозбуждения генератора протекает очень бурно. Такие генераторы практически не используются. В самом начале развития энергетики применялась система передачи энергии с последовательно включенными генераторами и двигателями последовательного возбуждения.

Генератор со смешанным возбуждением имеет две обмотки возбуждения — параллельную ОВП и последовательную ОВС обычно с согласным включением (рис. 1, г). Параллельная обмотка может быть включена до последовательной («короткий шунт») или после нее («длинный шунт»). МДС последовательной обмотки обычно невелика и рассчитана только на компенсацию падения напряжения в якоре при нагрузке. Такие генераторы теперь также практически не применяются.

Схемы возбуждения двигателей постоянного тока подобны схемам для генераторов. Двигатели постоянного тока большой мощности выполняются обычно с независимым возбуждением . У двигателей параллельного возбуждения обмотка возбуждения получает питание от того же источника энергии, что и двигатель. Обмотка возбуждения включается непосредственно на напряжение источника энергии, чтобы не сказывалось влияние падения напряжения в пусковом сопротивлении (рис. 2).

Рис. 2. Схема двигателя постоянного тока с параллельным возбуждением

Ток сети Ic составляется из тока якоря I я и тока возбуждения I в.

Схема двигателя последовательного возбуждения подобна схеме на рис. 1, в. Благодаря последовательной обмотке вращающий момент при нагрузке возрастает больше, чем у двигателей параллельного возбуждения, при этом скорость вращения уменьшается. Это свойство двигателей определяет их широкое применение в приводах электровозной тяги: в магистральных электровозах, городском транспорте и др. Падение напряжения в обмотке возбуждения при номинальном токе составляет единицы процентов от номинального напряжения.

Двигатели смешанного возбуждения из-за наличия последовательной обмотки в некоторой мере имеют свойства двигателей последовательного возбуждения. В настоящее время они практически не применяются. Двигатели параллельного возбуждения иногда выполняются со стабилизирующей (последовательной) обмоткой, включаемой согласно с параллельной обмоткой возбуждения, для обеспечения более спокойной работы при пиках нагрузки. МДС такой стабилизирующей обмотки невелика — единицы процентов от основной МДС.

Рабочие характеристики машин постоянного тока зависят от способа включения цепи возбуждения по отношению к цепи якоря:

1) Машины параллельного возбуждения

У этих машин цепь обмотки возбуждения соединяется параллельно с цепью якоря. В этом случае ток возбуждения Iв во много раз меньше тока якоря (0,05-0,01), а напряжение U между выводами цепей якоря и возбуждения одно и тоже. Следовательно, сопротивление обмотки возбуждения (r = ) должно быть относительно велико. Поэтому обмотку возбуждения изготавливают из тонкого провода и с большим числом витков. Благодаря этому она обладает значительным сопротивлением. Характерная особенность – постоянство главного магнитного потока, и его небольшая зависимость от условий нагрузки машины.

Читайте также:  Как сделать шокер из кроны

2) Машины последовательного возбуждения.

В этих машинах ток якоря I я равен току обмотки возбуждения, поэтому обмотка выполняется проводом большого сечения. Значение тока I я в обмотке последовательного возбуждения велико, благодаря чему для получения необходимой М.Д.С. (Iя пос.) достаточно, чтобы эта обмотка имела малое число витков пос.

пос.

Следовательно, сопротивление обмотки последовательного возбуждения r относительно мало. Для этих машин характерны изменение в широких пределах главного магнитного потока при изменениях нагрузки машины вследствие изменений тока якоря, который одновременно является и током возбуждения.

3) Машины независимого возбуждения.

В этих машинах обмотка возбуждения подключается к независимому источнику электроэнергии, благодаря чему ток в ней не зависит от напряжения на выводах якоря. Характерным для этих машин является независимость главного магнитного потока от

4) Машины смешанного возбуждения.

пос.
В этих машинах на каждом полюсном сердечнике расположены две обмотки. Обмотка, подключаемая параллельно якорю, является основной. Создаваемая ею М.Д.С. возбуждает главное магнитное поле. Последовательная обмотка лишь дополнительно воздействует на это магнитное поле(хотя может быть и наоборот).
пар.

Зависимость вращающего момента на валу электродвигателя постоянного тока от силы тока в обмотке якоря.

С независимым и параллельным возбуждением
Со смешанным возбуждением
С последовательным возбуждением

Механическая характеристика электродвигателя постоянного тока.

С последовательным возбуждением
Со смешанным возбуждением
С независимым и параллельным возбуждением

Регулирование частоты вращения двигателей.

Регулирование скорости двигателя последовательного возбуждения может быть осуществлено либо путём шунтирования обмотки возбуждения либо путём изменения напряжения на его зажимах.
В двигателях параллельного возбуждения регулирование частоты вращения производится изменением тока возбуждения, для чего служит реостат Rш в цепи возбуждения при малой нагрузке и холостом ходе сильное уменьшение тока возбуждения или обрыв цепи возбуждения может вызвать возрастание скорости двигателя до значений, опасных для механической целостности двигателя (т.к. разное).

Двигатель последовательного возбуждения может выдерживать сильные перегрузки, умеренно увеличивая при этом потребление тока. При уменьшении нагрузки на валу он медленно изменяет потребление тока, зато быстро повышает скорость и при нагрузках меньше 25% от номинальной, скорость становиться опасной для механической целостности двигателя (т.е. двигатель идёт в «разнос»).

Электроника

В настоящие время в технике используется в основном полупроводниковые электронные приборы (диоды, стабилитроны, полевые и биполярные транзисторы, тиристоры, варикапы и т.д).

Полупроводники – это тела, занимающие среднее положение между металлическими проводниками и диэлектриками, как по величине удельного сопротивления, так и по характеру действия ионов тела на электроны, движение которых создает электрический ток.

В полупроводниках (кремний Si, германий Ge) электроны связаны с ионами тела сильнее, чем в металлах, но все же гораздо слабее, чем в диэлектриках. Поэтому тепловое движение нарушает связь части электронов с ионами и эти электроны становятся «свободными», т.е. под действием электрического поля могут создавать ток. Чем выше температура, тем больше число электронов участвует в образовании электрического тока. Поэтому удельное сопротивление полупроводника уменьшается с ростом температуры. Т.е. переноносенными в полупроводниках, как и в металлах могут являться электроны, но процесс переноса может быть и иным чем в металлах. Т.е наряду с электронной может наблюдаться и так называемая «дырочная проводимость». Преобладание того или другого типа проводимости зависит от наличия в полупроводнике тех или иных примесей.

(Сурьма Sb, фосфор Р, галий Ga, индий In).

Если атомы примеси способны захватывать электроны полупроводника, то в полупроводнике образуются «дырки», т.е. состояния, которые могут быть заняты электронами. Но свободные электроны при этом не появляются, т.к. атомы примеси, а вместе с ними и захваченные электроны неподвижны. В этом случае электрический ток создается перемещением «дырок».

Читайте также:  Керамическая плитка с цветами для кухни

И наоборот, если атомы примеси легко отдают свои электроны, то в полупроводнике появляются свободные электроны без образования «дырок» и эти электроны создают электрический ток. Полупроводники, проводимость которых обусловлена наличием дырок, называют полупроводниками р типа (позитив положительный),а проводимость которых обусловлена свободными электронами называют полупроводниками n типа (негатив – отрицательный).

Принцип работы большинства полупроводниковых приборов основан на специфических явлениях, возникающих на границе раздела между полупроводниками n и р типов.

Так как разности потенциалов свободных «дырок» и свободных электронов разные, то по обе стороны от границы раздела полупроводников собираются свободные электроны и свободные дырки. При подключении к этим полупроводниках источника питания, ток будет протекать только в одном направлении, а ток в обратном направлении будет практически равен нулю.

Полупроводниковые диоды.

Одним из самых распространенных видов полупроводниковых приборов являются полупроводниковые диоды – прибор с одним р – n переходом и двумя выводами.

В полупроводниковых диодах используется свойство р – n перехода. Хорошо проводить ток в одном направлении и плохо пропускать его в обратном. Эти токи и соответствующие им напряжения между выводами полупроводникового диода называются прямыми и обратными, токами и напряжениями.

Для полупроводникового диода задают вольт-амперную характеристику. Вид вольт- амперной характеристики зависит от способа получения р – n перехода, концентрации свободных дырок и электронов, конструкции и т.д.

На рисунке изображена ВАХ германиевого диода и нарисовано условное изображение полупроводникового диода. Прямой ток в полупроводниковом диоде направлен от одного вывода к другому, которые соответственно называются анодным и катодным выводами. В качестве параметров, характеризующих нагрузочную способность полупроводникового диода, указывают:

– допустимый прямой ток Iпр.

– прямое напряжение Uпр.

– обратное напряжение Uобр.

-допустимая температура окружающей среды (до 50 о С для германиевых и до 140 о С для кремниевых диодов).

По типу конструкции перехода различают точечные и плоскостные полупроводниковые диоды.

Точечный диод – прибор, в котором все размеры электрического перехода меньше размеров областей, окружающих его и определяющих физические процессы в переходе.

Такой переход возникает, например, при вплавлении кончика металлической иглы в полупроводниковую пластину с одновременной присадкой лигирующего вещества. Из-за малой площади перехода, точечный диод относится к маломощным приборам и применяется главным образом в аппаратуре сверхвысокой частоты.

Плоскостный диод – прибор, в котором p-n переход возникает на значительной по площади границе между полупроводниками p- и n- типов.

В таких диодах переход получают путем сплавления пластин. Так как площадь p-n перехода большая, допустимая мощность рассеяния диодов малой мощности достигает 1 Вт, при прямом токе 1 А. такие плоскостные диоды часто применяют в цепях автоматики и приборостроения.

У плоскостных приборов большой мощности, допустимая мощность рассеяния достигает 10 кВт при прямом токе до 1000 А и Uобр до 1500 В. Они применяются в основном в выпрямителях.

Так же большое применение нашли полупроводниковые стабилитроны, которые применяются для стабилизации напряжения в электрических цепях. В этих диодах используется явление неразрушающего электрического пробоя p-n перехода при определенных значениях обратного напряжения.

Транзисторы

Транзисторы – полупроводниковые приборы, служащие для усиления мощности электрических сигналов.

По принципу действия транзисторы делятся на биполярные и полевые.

Биполярный транзистор – это трехслойная структура, в которой слой полупроводника одного типа находится между двумя слоями полупроводника другого типа.

Принцип работы транзисторов p-n-p типа и n-p-n типа одинаков, различия заключаются лишь в полярности внешних источников напряжений и в направлении протекания токов через электроды.

Читайте также:  Как хранить картофель на семена

Транзистор называется биполярным потому, что физические процессы в нем связаны с движением носителей зарядов обоих знаков, то есть свободных дырок и электронов.

Средний слой транзистора называется базой, один крайний слой – коллектором, а другой крайний слой – эмиттером.

Каждый слой имеет свой вывод, с помощью которого транзистор подключается в цепь.

Исходными элементами простейшей схемы транзистора являются источник электроэнергии Ек, включенный в цепь коллектора, и батарея смещения Еэ обеспечивающая положительный потенциал эмиттера по отношению к базе.

По отношению к переходу p-n у эмиттера батарея Еэ включена в прямом (проводящем) направлении.

По отношению к переходу p-n у коллектора батарея Ек включена в обратном (непроводящем) направлении.

Пока цепь эмиттера выключена, в цепи коллектора ток очень мал, так как обратное сопротивление перехода p-n весьма велико. Для создания тока в цепи эмиттера достаточно небольшой э.д.с., так как переход p-n в этой цепи имеет малое прямое сопротивление.

Включение тока эмиттера вызывает сильное изменение сопротивления перехода в цепи коллектора и в ней возникает значительный ток Iк. изменения тока эмиттера вызывают пропорциональные изменения тока коллектора Iк. таким образом, ток Iэ в цепи эмиттера, обладающий малым сопротивлением, управляет током в цепи коллектора, обладающей большим сопротивлением. Так как Ек>>Еэ, то при одинаковом порядке изменения тока имеет место значительно большее изменение мощности в цепи коллектора: в нем и заключается усиление по мощности.

Возбуждение главного магнитного поля возможно с помощью либо электромагнитов, либо постоянных магнитов (менее распространенных).

Все рабочие характеристики машин постоянного тока при работе как в режиме генератора, так и в режиме двигателя зависят от способа включения по отношению к цепи якоря.

1.В машинах с независимым возбуждением обмотка возбуждения имеет Wв витков, подключается к независимому источнику электроэнергии, благодаря чему ток в ней не зависит от напряжения на выводах якоря машины. Для этих машин характерна независимость главного потока от нагрузки машины.

2. У машин с параллельным возбуждением цепь обмотки возбуждения соединяется параллельно с цепью якоря.

В этом случае ток возбуждения Iв во много раз меньше тока в якоре Iя

.

Напряжение U между выводами цепей якоря и возбуждения одно и тоже. Сопротивление обмотки возбуждения должно быть достаточно велико

.

Обмотка возбуждения машины параллельного возбуждения имеет большое число витков Wпар из тонкого провода, следовательно, значительное сопротивление.

Для машин параллельного возбуждения, работающих в системе большой мощности, характерно постоянство главного магнитного потока и его небольшая зависимость от условий нагрузки машины.

3.У машин с последовательным возбуждением ток якоря Iя равен току обмотки возбуждения Iв ,

.

Значение тока Iя в обмотке последовательного возбуждения велико, так что получение необходимой м.д.с.

.

Обмотка может иметь малое число витков Wпосл. Характерно изменение в широких пределах главного магнитного потока при изменениях нагрузки.

4. В машинах со смешанным возбуждением на каждом полюсном сердечнике расположены две обмотки. Одна с числом витков Wпр подключена параллельно якорю, вторая с числом витком Wпосл – последовательно.

В зависимости от преобладания м.д.с., созданных последовательной или параллельной обмоткой возбуждения, машина по своим характеристикам может быть машиной последовательного возбуждения с небольшой параллельной обмоткой или машиной параллельного возбуждения с небольшой последовательной обмоткой.

В большинстве машин смешанного возбуждения применяется согласное соединение, т.е. м.д.с. обмоток складываются. Встречное соединение применяют в немногих специальных случаях.

Дата добавления: 2015-12-16 ; просмотров: 982 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Комментарии запрещены.

Присоединяйся