Каковы условия существования постоянного электрического тока

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока – устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают при движении проводника в магнитном поле, в фотоэлементах – при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

Опыты, проведенные Рикке в 1901 г., Мандельштамом и Папалекси в 1913 г., Толменом и Стюартом в 1916 г. показали, что носителями тока в металлах являются электроны. Ток в металлах можно вызвать крайне малой разностью потенциалов. Это даёт основание считать, что электроны перемещаются по металлу практически свободно. Появление этих свободных электронов объясняется тем, что при образовании кристаллической решётки от атомов металлов легко отрываются слабее всего связанные валентные электроны. Можно показать, что концентрация их достигает электронов в . При такой высокой концентрации электронов средняя сила, действующая на электрон со стороны всех остальных электронов и ионов, равна нулю и, следовательно, электроны можно считать свободными частицами и их взаимодействие с ионами можно рассматривать как ряд последовательных соударений.

В этом приближении система электронов может анализироваться как система одноатомных молекул идеального газа. Исходя из этого, Друде и позднее Лоренц распространили результаты кинетической теории газов (см лекции 1,2) на свободные электроны – на так называемый электронный газ и получили законы Ома, Джоуля-Ленца в дифференциальной форме.

В позапрошлом семестре изучались эти законы [см. конспект лекций, ч. II, формулы (16), (38) в лекциях 6,7].

Плотность тока проводимости равна произведению удельной электрической проводимости проводника на напряжённость электрического поля в проводнике, т.е.

– закон Ома в дифференциальной форме. (1)

Удельная тепловая мощность тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряжённости электрического поля в проводнике, т. е.

– закон Джоуля-Ленца в дифференциальной форме, (2)

где в (1) и (2) g – удельная электропроводность (g = 1/r).

Друде и Лоренц показали, что для металлических проводников

, (3)

где n – концентрация свободных электронов, e и m – заряд и масса электрона, álñ -средняя длина свободного пробега электрона, ávñ – средняя скорость теплового движения электрона. Согласно формуле (30) в лекции 1,2 ávñ и при Т = 300 К, (масса электрона ), .

Скорость же направленного движения (скорость дрейфа электрона), возникающего благодаря электрическому полю . Для , (заряд электрона ), vдр = = 0,78 мм/с, т. е. много меньше скорости теплового движения электрона.

Итак, классическая теория объяснила законы Ома, Джоуля-Ленца, Видемана-Франца. Вместе с тем она имеет ряд недостатков.

Строгий анализ с использованием квантовой теории показал, что не все валентные электроны свободно движутся по решётке с тепловыми скоростями, а лишь малая их часть. Подавляющее число валентных электронов в электропроводимости (как и в теплоёмкости) не участвуют. Это приводит к расхождениям между классической теорией и практикой. Например, из (3) следует, что

, а на практике в большом диапазоне изменения температур g

Разность потенциалов, напряжение и электродвижущая сила

Рассмотрим простейшую электрическую цепь, состоящую из источника тока и потребителя с сопротивлением R (рис. 16.2).

Рис. 16.2.

Однородным (пассивным) принято называть участок цепи АВ, на котором отсутствует источник тока. Напряжение на однородном участке равно разности потенциалов в точках А и В:

(16.7)

Неоднородным участком цепи (активным) принято называть участок АС, на котором имеется источник тока. При движении тока на участке АВ (рис. 16.2) потенциал падает . На участке ВС – потенциал возрастает или убывает если изменить на обратный знак полюса источника тока.

Читайте также:  Как сварить райские яблочки целиком в сиропе

Внутри источника тока имеются сторонние силы, под действием которых электроны движутся в направлении, противоположном тому, в котором их заставляет двигаться электрическое поле. Сторонними называются силы неэлектрической природы: механические, магнитные, химические и др. Источник тока характеризуется электродвижущей силой e (ЭДС), измеряемой в Вольтах. Электродвижущей силой принято называть величина, равная работе сторонних сил над единичным положительным зарядом:

(16.8)

Напряжение на неоднородном участке (участок АС на рис. 16.2) запишем в виде

В общем случае источник тока может быть включен так, что потенциал возрастает или убывает, в связи с этим напряжение на неоднородном участке равно

(16.9)

Поскольку при замыкании цепи то из (16.9) находим, что напряжение в замкнутой электрической цепи равно Э.Д.С. источника тока:

(16.10)

При разомкнутой внешней цепи ЭДС источника тока равна разности потенциалов между его зажимами этого источника тока. Изменение потенциала в электрической цепи можно представить графически (рис. 16.3).

Дата добавления: 2017-02-25 ; просмотров: 991 | Нарушение авторских прав

Электрическим током называют упорядоченное (направленное) движение заряженных частиц. Электрический ток возникает при упорядоченном перемещении свободных электронов или ионов.

Конвекционный ток- ток движения заряженного тела. Ток проводимости – ток движения свободных носителей в проводнике под действием электрического поля. Полный заряд, переносимый через любое сечение проводника равен нулю, так как заряды разных знаков перемещаются с одинаковой средней скоростью. Электрический ток имеет определенное направление. За направление тока принимают направление движения положительно заряженных частиц.

Условия существования постоянного тока:

1) Наличие свободных носителей заряда

2) цепь постоянного тока проводимости должна быть замкнутой;

3) Наличие сторонних сил

Сторонними силами называются любые силы, действующие на заряды не электростатической природы.

Заряд, перенесенный в единицу времени, служит основной количественной характеристикой тока, называемой силой тока. Если через поперечное сечение проводника за время Δt переносится заряд Δq , то сила тока равна: I= . Сила тока равна отношению заряда Δq, переносимого через поперечное сечение проводника за интервал времени Δt, к этому интервалу времени. Если сила тока со временем не меняется, то ток называют постоянным. I=q0nVS

Сила тока зависит от:

1. заряда, переносимого каждой частицей (q0);

2. концентрации частиц (n);

3. скорости направленного движения частиц (v);

4. площади поперечного сечения проводника (S).

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному. . Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В). При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10458 – | 7917 – или читать все.

На данном уроке, тема которого: «Условия для существования электрического тока», мы вспомним, что такое электрический ток, что может являться носителем заряда, а также рассмотрим условия, при которых будет протекать электрический ток.

Введение

Мы изучаем электрический ток. Что нужно для его возникновения? Если в фонарик не вставить батарейку, он не будет работать, ток не потечет. Но и в батарейке, которая лежит на столе, ток тоже не течет. Почему? Разберемся в этом вопросе.

Электрический ток

Что такое электрический ток? В самом термине содержится указание – это течение электричества. Раньше, до открытия элементарных заряженных частиц, электрический заряд считали некой жидкостью, наполняющей заряженные тела. Перемещение этой жидкости и назвали электрическим током.

Сейчас, обладая знаниями о строении вещества, можно сказать, что сравнение оказалось достаточно точным и электрический ток можно действительно сравнить с течением некой жидкости (или более точное сравнение – с газом), только состоящей не из молекул, а из элементарных заряженных частиц.

Читайте также:  Как установить кант на натяжной потолок

На прошлом уроке мы разобрали, что такое электрический ток. Сегодня мы рассмотрим природу этого явления более подробно, чтобы понять, почему же оно возникает.

Дадим четкое определение. Мы знаем о носителях заряда, поэтому определим электрический ток как движение заряженных частиц. Вы помните из молекулярно-кинетической теории, что частицы, из которых состоит вещество, в том числе электроны, постоянно пребывают в тепловом хаотическом движении (см. рис. 1), но это не является электрическим током, как и тепловое движение молекул воды не создает течения. Все направления такого движения равновероятны, и суммарное перемещение при этом равно нулю. Течение наблюдается, когда движение направлено. Хаотическое движение при этом не прекращается, но оно складывается с направленным, и суммарное перемещение уже не равно нулю, система частиц в целом движется.

Рис. 1. Хаотическое движение

Поэтому определение тока дадим следующее.

Электрический ток – это направленное движение электрического заряда. Поскольку заряд не существует отдельно от носителя, ток можно определить как направленное движение заряженных частиц.

Скорость движения частиц

Частица обладает скоростью движения. В механике мы часто раскладывали скорость на составляющие и рассматривали их отдельно. То же можем сделать и сейчас для скоростей теплового направленного движения частицы.

Скорость ее теплового движения обычно составляет порядка сотен метров в секунду, но эта скорость нас сейчас не интересует, нас интересует направленное движение частиц.

Скорость направленного движения электронов в проводнике обычно составляет доли миллиметра в минуту, ее мы еще будем находить в одном из следующих уроков.

Заметьте: это не значит скорость распространения тока (это происходит почти мгновенно), это именно скорость движения частицы. То есть электрический ток возникает практически одновременно во всей цепи. Чтобы было понятно, проведем снова аналогию с током воды по трубе.

Например, есть труба длиной 1 метр. По ней течет вода со скоростью 10 . Суммарное перемещение молекул воды за секунду составит 10 см. Значит ли это, что ток распространится только на 10 см? Нет, вода течет по всей трубе, и любой элементарный объем воды внутри трубы переместится на 10 см (см. рис. 2).

Рис. 2. Перемещение любого объема воды в трубе

Таким образом, вода из одного конца трубы не переместится до второго конца, но течение распространится. Это произойдет потому, что по всему объему трубы по закону Паскаля распространяется давление, вызывающее ток, причем практически мгновенно. Так же в проводнике распространяется электрическое поле.

Носители заряда

Что может являться носителем заряда, образующим ток? Мы знаем два носителя электрического заряда: протон и электрон. Чтобы они могли создавать электрический ток, они также должны быть подвижными. Поэтому, например, в твердых веществах протоны, которые содержатся в ядрах атомов, не могут создавать электрический ток, поскольку атомы зафиксированы на своем месте в структуре вещества (см. рис. 3).

Рис. 3. Протоны в ядрах атомов твердых веществ

Электроны (это мы изучали на прошлом уроке) в диэлектриках не могут покидать атом, поэтому они тоже зафиксированы, а в проводниках один или несколько электронов в атоме слабо взаимодействуют с ядром и могут покидать атом. Такие электроны называются свободными.

Электрон может покинуть молекулу или атом газа, если сообщить ей достаточную для этого энергию. В этом случае получим свободный отрицательно заряженный электрон, а молекула или атом, потеряв электрон, приобретет положительный заряд и также станет свободным носителем заряда (см. рис. 4).

Рис. 4. Электрон покидает молекулу газа

Молекулы ряда веществ, которые называются электролитами, при растворении в воде распадаются на положительно и отрицательно заряженные части. Эти части называются ионами (см. рис. 5), они являются свободными носителями заряда в растворах электролитов.

Рис. 5. Свободные носители зарядов в растворах электролитов

Условия существования электрического тока

Рассмотрим протекание электрического тока на примере проводников. Какие условия должны выполняться, чтобы существовал электрический ток? Первое условие очевидно: чтобы существовало движение частиц, для этого нужно, чтобы были свободные частицы, способные передвигаться. В проводниках такими носителями тока являются свободные электроны.

Читайте также:  Как снести вентиляционный короб

Что заставляет частицу двигаться? Электрический заряд взаимодействует с электрическим полем, и на него действует сила (см. рис. 6). Эта сила и заставит электрон двигаться.

Рис. 6. Действие силы на электрический заряд

Второе условие существования электрического тока – наличие электрического поля в проводнике, которое характеризуется потенциалом в каждой точке или разностью потенциалов между двумя точками.

Достаточно ли этого? Проверим. Предположим, что у нас есть проводник со свободными носителями заряда и в проводнике есть электрическое поле (см. рис. 7).

Рис. 7. Проводник со свободными зарядами

Свободные электроны будут двигаться в сторону, противоположную вектору напряженности электрического поля, и будут скапливаться у одного из краев проводника, он станет заряжен отрицательно (см. рис. 8).

Рис. 8. Движение электронов в проводнике

У противоположного края при том же количестве атомов электронов будет меньше, поэтому он будет заряжен положительно. Этот процесс подробнее рассмотрен в ответвлении, скопившиеся заряды образуют свое электрическое поле, направленное противоположно внешнему и ослабляющее его. При ослаблении поля уменьшится и сила, которая разносит заряды по краям проводника, пока поля не уравновесятся. Эти процессы протекают быстро, и ток, как видим, быстро исчезает. Для его поддержания нужно, очевидно, чтобы электроны не накапливались на одном из краев проводника, а возвращались на противоположный край, т. е. цепь нужно замкнуть (см. рис. 9).

Рис. 9. Пример замкнутой цепи

Проводник во внешнем электрическом поле

Возьмем твердое тело – проводящую пластину – и поместим ее в однородное электрическое поле.

В первый момент, после внесения пластины в поле, возникнет электрический ток. Свободные носители заряда под действием силы со стороны внешнего электрического поля начнут движение и переместятся в соответствующую сторону проводника. Таким образом, один край пластины окажется заряженным положительно, другой – отрицательно (см. рис. 10).

Рис. 10. Перемещение свободных носителей заряда

Если бы мы разделили пластину на две части в момент, когда она находится в электрическом поле, то обе половинки оказались бы заряженными. Одна – положительно, другая – отрицательно. Эти области скопления зарядов создают свое электрическое поле, которое будет направлено в противоположную от внешнего сторону и будет стремиться скомпенсировать его (см. рис. 11).

Рис. 11. Электрическое поле зарядов

Движение носителей заряда прекратится лишь в тот момент, когда внутреннее и внешнее поле станут равны по модулю напряженности. То есть суммарное поле внутри проводника станет равно нулю:

Таким образом, внутри проводников электрическое поле отсутствует. На этом факте основана электростатическая защита. Приборы, которые необходимо защитить от электрического поля, помещают в специальные металлические ящики.

Итак, мы разобрали три условия возникновения электрического тока: наличие свободных носителей заряда; электрическое поле, которое будет вызывать движение заряженных частиц, и замкнутая цепь.

На следующих уроках мы продолжим изучение электрического тока. А сегодняшний урок окончен, спасибо за внимание!

Список литературы

1. Соколович Ю.А., Богданова Г.С. Физика: Справочник с примерами решения задач. – 2-е издание, передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.

2. Касьянов В.А. Физика. 10 кл.: Профильный уровень. 13-е издание. – М.: 2013 – 432 с.

3. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: 10 кл., учебник для общеобразовательных учреждений, базовый и профильный уровни. – 19-е изд.– М.: «Просвещение», 2010.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-сайт examen.ru (Источник)

2. Портал Естественных Наук (Источник)

3. Интернет-сайт tel-spb.ru (Источник)

Домашнее задание

1. Что такое электрический ток?

2. Какие условия существования электрического тока?

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Комментарии запрещены.

Присоединяйся